Abstract:We propose SnCQA, a set of hardware-efficient variational circuits of equivariant quantum convolutional circuits respective to permutation symmetries and spatial lattice symmetries with the number of qubits $n$. By exploiting permutation symmetries of the system, such as lattice Hamiltonians common to many quantum many-body and quantum chemistry problems, Our quantum neural networks are suitable for solving machine learning problems where permutation symmetries are present, which could lead to significant savings of computational costs. Aside from its theoretical novelty, we find our simulations perform well in practical instances of learning ground states in quantum computational chemistry, where we could achieve comparable performances to traditional methods with few tens of parameters. Compared to other traditional variational quantum circuits, such as the pure hardware-efficient ansatz (pHEA), we show that SnCQA is more scalable, accurate, and noise resilient (with $20\times$ better performance on $3 \times 4$ square lattice and $200\% - 1000\%$ resource savings in various lattice sizes and key criterions such as the number of layers, parameters, and times to converge in our cases), suggesting a potentially favorable experiment on near-time quantum devices.
Abstract:Climate change is becoming one of the greatest challenges to the sustainable development of modern society. Renewable energies with low density greatly complicate the online optimization and control processes, where modern advanced computational technologies, specifically quantum computing, have significant potential to help. In this paper, we discuss applications of quantum computing algorithms toward state-of-the-art smart grid problems. We suggest potential, exponential quantum speedup by the use of the Harrow-Hassidim-Lloyd (HHL) algorithms for sparse matrix inversions in power-flow problems. However, practical implementations of the algorithm are limited by the noise of quantum circuits, the hardness of realizations of quantum random access memories (QRAM), and the depth of the required quantum circuits. We benchmark the hardware and software requirements from the state-of-the-art power-flow algorithms, including QRAM requirements from hybrid phonon-transmon systems, and explicit gate counting used in HHL for explicit realizations. We also develop near-term algorithms of power flow by variational quantum circuits and implement real experiments for 6 qubits with a truncated version of power flows.