Abstract:The skull segmentation from CT scans can be seen as an already solved problem. However, in MR this task has a significantly greater complexity due to the presence of soft tissues rather than bones. Capturing the bone structures from MR images of the head, where the main visualization objective is the brain, is very demanding. The attempts that make use of skull stripping seem to not be well suited for this task and fail to work in many cases. On the other hand, supervised approaches require costly and time-consuming skull annotations. To overcome the difficulties we propose a fully unsupervised approach, where we do not perform the segmentation directly on MR images, but we rather perform a synthetic CT data generation via MR-to-CT translation and perform the segmentation there. We address many issues associated with unsupervised skull segmentation including the unpaired nature of MR and CT datasets (contrastive learning), low resolution and poor quality (super-resolution), and generalization capabilities. The research has a significant value for downstream tasks requiring skull segmentation from MR volumes such as craniectomy or surgery planning and can be seen as an important step towards the utilization of synthetic data in medical imaging.
Abstract:Modeling and manufacturing of personalized cranial implants are important research areas that may decrease the waiting time for patients suffering from cranial damage. The modeling of personalized implants may be partially automated by the use of deep learning-based methods. However, this task suffers from difficulties with generalizability into data from previously unseen distributions that make it difficult to use the research outcomes in real clinical settings. Due to difficulties with acquiring ground-truth annotations, different techniques to improve the heterogeneity of datasets used for training the deep networks have to be considered and introduced. In this work, we present a large-scale study of several augmentation techniques, varying from classical geometric transformations, image registration, variational autoencoders, and generative adversarial networks, to the most recent advances in latent diffusion models. We show that the use of heavy data augmentation significantly increases both the quantitative and qualitative outcomes, resulting in an average Dice Score above 0.94 for the SkullBreak and above 0.96 for the SkullFix datasets. Moreover, we show that the synthetically augmented network successfully reconstructs real clinical defects. The work is a considerable contribution to the field of artificial intelligence in the automatic modeling of personalized cranial implants.
Abstract:The design of personalized cranial implants is a challenging and tremendous task that has become a hot topic in terms of process automation with the use of deep learning techniques. The main challenge is associated with the high diversity of possible cranial defects. The lack of appropriate data sources negatively influences the data-driven nature of deep learning algorithms. Hence, one of the possible solutions to overcome this problem is to rely on synthetic data. In this work, we propose three volumetric variations of deep generative models to augment the dataset by generating synthetic skulls, i.e. Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP), WGAN-GP hybrid with Variational Autoencoder pretraining (VAE/WGAN-GP) and Introspective Variational Autoencoder (IntroVAE). We show that it is possible to generate dozens of thousands of defective skulls with compatible defects that achieve a trade-off between defect heterogeneity and the realistic shape of the skull. We evaluate obtained synthetic data quantitatively by defect segmentation with the use of V-Net and qualitatively by their latent space exploration. We show that the synthetically generated skulls highly improve the segmentation process compared to using only the original unaugmented data. The generated skulls may improve the automatic design of personalized cranial implants for real medical cases.