Abstract:This paper presents a pure neural solver for arithmetic expression calculation (AEC) problem. Previous work utilizes the powerful capabilities of deep neural networks and attempts to build an end-to-end model to solve this problem. However, most of these methods can only deal with the additive operations. It is still a challenging problem to solve the complex expression calculation problem, which includes the adding, subtracting, multiplying, dividing and bracketing operations. In this work, we regard the arithmetic expression calculation as a hierarchical reinforcement learning problem. An arithmetic operation is decomposed into a series of sub-tasks, and each sub-task is dealt with by a skill module. The skill module could be a basic module performing elementary operations, or interactive module performing complex operations by invoking other skill models. With curriculum learning, our model can deal with a complex arithmetic expression calculation with the deep hierarchical structure of skill models. Experiments show that our model significantly outperforms the previous models for arithmetic expression calculation.
Abstract:Designing shared neural architecture plays an important role in multi-task learning. The challenge is that finding an optimal sharing scheme heavily relies on the expert knowledge and is not scalable to a large number of diverse tasks. Inspired by the promising work of neural architecture search (NAS), we apply reinforcement learning to automatically find possible shared architecture for multi-task learning. Specifically, we use a controller to select from a set of shareable modules and assemble a task-specific architecture, and repeat the same procedure for other tasks. The controller is trained with reinforcement learning to maximize the expected accuracies for all tasks. We conduct extensive experiments on two types of tasks, text classification and sequence labeling, which demonstrate the benefits of our approach.