Abstract:Autonomous underwater vehicles (AUVs) are essential for marine exploration and research. However, conventional designs often struggle with limited maneuverability in complex, dynamic underwater environments. This paper introduces an innovative orientation-adjustable thruster AUV (OATAUV), equipped with a redundant vector thruster configuration that enables full six-degree-of-freedom (6-DOF) motion and composite maneuvers. To overcome challenges associated with uncertain model parameters and environmental disturbances, a novel feedforward adaptive model predictive controller (FFAMPC) is proposed to ensure robust trajectory tracking, which integrates real-time state feedback with adaptive parameter updates. Extensive experiments, including closed-loop tracking and composite motion tests in a laboratory pool, validate the enhanced performance of the OAT-AUV. The results demonstrate that the OAT-AUV's redundant vector thruster configuration enables 23.8% cost reduction relative to common vehicles, while the FF-AMPC controller achieves 68.6% trajectory tracking improvement compared to PID controllers. Uniquely, the system executes composite helical/spiral trajectories unattainable by similar vehicles.