Abstract:Visual Question Answering (VQA) models play a critical role in enhancing the perception capabilities of autonomous driving systems by allowing vehicles to analyze visual inputs alongside textual queries, fostering natural interaction and trust between the vehicle and its occupants or other road users. This study investigates the attention patterns of humans compared to a VQA model when answering driving-related questions, revealing disparities in the objects observed. We propose an approach integrating filters to optimize the model's attention mechanisms, prioritizing relevant objects and improving accuracy. Utilizing the LXMERT model for a case study, we compare attention patterns of the pre-trained and Filter Integrated models, alongside human answers using images from the NuImages dataset, gaining insights into feature prioritization. We evaluated the models using a Subjective scoring framework which shows that the integration of the feature encoder filter has enhanced the performance of the VQA model by refining its attention mechanisms.
Abstract:This short paper presents a preliminary analysis of three popular Visual Question Answering (VQA) models, namely ViLBERT, ViLT, and LXMERT, in the context of answering questions relating to driving scenarios. The performance of these models is evaluated by comparing the similarity of responses to reference answers provided by computer vision experts. Model selection is predicated on the analysis of transformer utilization in multimodal architectures. The results indicate that models incorporating cross-modal attention and late fusion techniques exhibit promising potential for generating improved answers within a driving perspective. This initial analysis serves as a launchpad for a forthcoming comprehensive comparative study involving nine VQA models and sets the scene for further investigations into the effectiveness of VQA model queries in self-driving scenarios. Supplementary material is available at https://github.com/KaavyaRekanar/Towards-a-performance-analysis-on-pre-trained-VQA-models-for-autonomous-driving.