Abstract:Interference effects of tall buildings have attracted numerous studies due to the boom of clusters of tall buildings in megacities. To fully understand the interference effects of buildings, it often requires a substantial amount of wind tunnel tests. Limited wind tunnel tests that only cover part of interference scenarios are unable to fully reveal the interference effects. This study used machine learning techniques to resolve the conflicting requirement between limited wind tunnel tests that produce unreliable results and a completed investigation of the interference effects that is costly and time-consuming. Four machine learning models including decision tree, random forest, XGBoost, generative adversarial networks (GANs), were trained based on 30% of a dataset to predict both mean and fluctuating pressure coefficients on the principal building. The GANs model exhibited the best performance in predicting these pressure coefficients. A number of GANs models were then trained based on different portions of the dataset ranging from 10% to 90%. It was found that the GANs model based on 30% of the dataset is capable of predicting both mean and fluctuating pressure coefficients under unseen interference conditions accurately. By using this GANs model, 70% of the wind tunnel test cases can be saved, largely alleviating the cost of this kind of wind tunnel testing study.
Abstract:Numerous studies have been carried out to measure wind pressures around circular cylinders since the early 20th century due to its engineering significance. Consequently, a large amount of wind pressure data sets have accumulated, which presents an excellent opportunity for using machine learning (ML) techniques to train models to predict wind pressures around circular cylinders. Wind pressures around smooth circular cylinders are a function of mainly the Reynolds number (Re), turbulence intensity (Ti) of the incident wind, and circumferential angle of the cylinder. Considering these three parameters as the inputs, this study trained two ML models to predict mean and fluctuating pressures respectively. Three machine learning algorithms including decision tree regressor, random forest, and gradient boosting regression trees (GBRT) were tested. The GBRT models exhibited the best performance for predicting both mean and fluctuating pressures, and they are capable of making accurate predictions for Re ranging from 10^4 to 10^6 and Ti ranging from 0% to 15%. It is believed that the GBRT models provide very efficient and economical alternative to traditional wind tunnel tests and computational fluid dynamic simulations for determining wind pressures around smooth circular cylinders within the studied Re and Ti range.