Abstract:Efficient utilization of satellite resources in dynamic environments remains a challenging problem in satellite scheduling. This paper addresses the multi-satellite collection scheduling problem (m-SatCSP), aiming to optimize task scheduling over a constellation of satellites under uncertain conditions such as cloud cover. Leveraging Monte Carlo Tree Search (MCTS), a stochastic search algorithm, two versions of MCTS are explored to schedule satellites effectively. Hyperparameter tuning is conducted to optimize the algorithm's performance. Experimental results demonstrate the effectiveness of the MCTS approach, outperforming existing methods in both solution quality and efficiency. Comparative analysis against other scheduling algorithms showcases competitive performance, positioning MCTS as a promising solution for satellite task scheduling in dynamic environments.
Abstract:Machine learning systems require representations of the real world for training and testing - they require data, and lots of it. Collecting data at scale has logistical and ethical challenges, and synthetic data promises a solution to these challenges. Instead of needing to collect photos of real people's faces to train a facial recognition system, a model creator could create and use photo-realistic, synthetic faces. The comparative ease of generating this synthetic data rather than relying on collecting data has made it a common practice. We present two key risks of using synthetic data in model development. First, we detail the high risk of false confidence when using synthetic data to increase dataset diversity and representation. We base this in the examination of a real world use-case of synthetic data, where synthetic datasets were generated for an evaluation of facial recognition technology. Second, we examine how using synthetic data risks circumventing consent for data usage. We illustrate this by considering the importance of consent to the U.S. Federal Trade Commission's regulation of data collection and affected models. Finally, we discuss how these two risks exemplify how synthetic data complicates existing governance and ethical practice; by decoupling data from those it impacts, synthetic data is prone to consolidating power away those most impacted by algorithmically-mediated harm.
Abstract:Recent advances in machine learning and computer vision have led to reported facial recognition accuracies surpassing human performance. We question if these systems will translate to real-world forensic scenarios in which a potentially low-resolution, low-quality, partially-occluded image is compared against a standard facial database. We describe the construction of a large-scale synthetic facial dataset along with a controlled facial forensic lineup, the combination of which allows for a controlled evaluation of facial recognition under a range of real-world conditions. Using this synthetic dataset, and a popular dataset of real faces, we evaluate the accuracy of two popular neural-based recognition systems. We find that previously reported face recognition accuracies of more than 95% drop to as low as 65% in this more challenging forensic scenario.