Abstract:Similarity metric is crucial for massive MIMO positioning utilizing channel state information~(CSI). In this letter, we propose a novel massive MIMO CSI similarity learning method via deep convolutional neural network~(DCNN) and contrastive learning. A contrastive loss function is designed considering multiple positive and negative CSI samples drawn from a training dataset. The DCNN encoder is trained using the loss so that positive samples are mapped to points close to the anchor's encoding, while encodings of negative samples are kept away from the anchor's in the representation space. Evaluation results of fingerprint-based positioning on a real-world CSI dataset show that the learned similarity metric improves positioning accuracy significantly compared with other known state-of-the-art methods.
Abstract:We consider the mobile localization problem in future millimeter-wave wireless networks with distributed Base Stations (BSs) based on multi-antenna channel state information (CSI). For this problem, we propose a Semi-supervised tdistributed Stochastic Neighbor Embedding (St-SNE) algorithm to directly embed the high-dimensional CSI samples into the 2D geographical map. We evaluate the performance of St-SNE in a simulated urban outdoor millimeter-wave radio access network. Our results show that St-SNE achieves a mean localization error of 6.8 m with only 5% of labeled CSI samples in a 200*200 m^2 area with a ray-tracing channel model. St-SNE does not require accurate synchronization among multiple BSs, and is promising for future large-scale millimeter-wave localization.