Abstract:This paper investigates a novel underlaid sensing pilot signal design for integrated sensing and communications (ISAC) in an OFDM-based communication system. The proposed two-dimensional (2D) pilot signal is first generated on the delay-Doppler (DD) plane and then converted to the time-frequency (TF) plane for multiplexing with the OFDM data symbols. The sensing signal underlays the OFDM data, allowing for the sharing of time-frequency resources. In this framework, sensing detection is implemented based on a simple 2D correlation, taking advantage of the favorable auto-correlation properties of the sensing pilot. In the communication part, the sensing pilot, served as a known signal, can be utilized for channel estimation and equalization to ensure optimal symbol detection performance. The underlaid sensing pilot demonstrates good scalability and can adapt to different delay and Doppler resolution requirements without violating the OFDM frame structure. Experimental results show the effective sensing performance of the proposed pilot, with only a small fraction of power shared from the OFDM data, while maintaining satisfactory symbol detection performance in communication.
Abstract:As traditional centralized learning networks (CLNs) are facing increasing challenges in terms of privacy preservation, communication overheads, and scalability, federated learning networks (FLNs) have been proposed as a promising alternative paradigm to support the training of machine learning (ML) models. In contrast to the centralized data storage and processing in CLNs, FLNs exploit a number of edge devices (EDs) to store data and perform training distributively. In this way, the EDs in FLNs can keep training data locally, which preserves privacy and reduces communication overheads. However, since the model training within FLNs relies on the contribution of all EDs, the training process can be disrupted if some of the EDs upload incorrect or falsified training results, i.e., poisoning attacks. In this paper, we review the vulnerabilities of FLNs, and particularly give an overview of poisoning attacks and mainstream countermeasures. Nevertheless, the existing countermeasures can only provide passive protection and fail to consider the training fees paid for the contributions of the EDs, resulting in a unnecessarily high training cost. Hence, we present a smart security enhancement framework for FLNs. In particular, a verify-before-aggregate (VBA) procedure is developed to identify and remove the non-benign training results from the EDs. Afterward, deep reinforcement learning (DRL) is applied to learn the behaving patterns of the EDs and to actively select the EDs that can provide benign training results and charge low training fees. Simulation results reveal that the proposed framework can protect FLNs effectively and efficiently.