Abstract:This study addresses critical challenges of cybersecurity in digital substations by proposing an innovative task-oriented dialogue (ToD) system for anomaly detection (AD) in multicast messages, specifically, generic object oriented substation event (GOOSE) and sampled value (SV) datasets. Leveraging generative artificial intelligence (GenAI) technology, the proposed framework demonstrates superior error reduction, scalability, and adaptability compared with traditional human-in-the-loop (HITL) processes. Notably, this methodology offers significant advantages over machine learning (ML) techniques in terms of efficiency and implementation speed when confronting novel and/or unknown cyber threats, while also maintaining model complexity and precision. The research employs advanced performance metrics to conduct a comparative assessment between the proposed AD and HITL-based AD frameworks, utilizing a hardware-in-the-loop (HIL) testbed for generating and extracting features of IEC61850 communication messages. This approach presents a promising solution for enhancing the reliability of power system operations in the face of evolving cybersecurity challenges.
Abstract:This paper presents a novel approach to Autonomous Vehicle (AV) control through the application of active inference, a theory derived from neuroscience that conceptualizes the brain as a predictive machine. Traditional autonomous driving systems rely heavily on Modular Pipelines, Imitation Learning, or Reinforcement Learning, each with inherent limitations in adaptability, generalization, and computational efficiency. Active inference addresses these challenges by minimizing prediction error (termed "surprise") through a dynamic model that balances perception and action. Our method integrates active inference with deep learning to manage lateral control in AVs, enabling them to perform lane following maneuvers within a simulated urban environment. We demonstrate that our model, despite its simplicity, effectively learns and generalizes from limited data without extensive retraining, significantly reducing computational demands. The proposed approach not only enhances the adaptability and performance of AVs in dynamic scenarios but also aligns closely with human-like driving behavior, leveraging a generative model to predict and adapt to environmental changes. Results from extensive experiments in the CARLA simulator show promising outcomes, outperforming traditional methods in terms of adaptability and efficiency, thereby advancing the potential of active inference in real-world autonomous driving applications.