Abstract:The recent paradigm shift toward large reasoning models (LRMs) as autonomous agents has intensified the demand for sophisticated, multi-turn tool-use capabilities. Yet, existing datasets and data-generation approaches are limited by static, predefined toolsets that cannot scale to the complexity of open-ended human-agent collaboration. To address this, we initially developed a framework for automated task-oriented multi-turn dialogue generation at scale, utilizing an LRM-based simulator to dynamically generate high-value, domain-specific tools to solve specified tasks. However, we observe that a purely task-oriented design often results in "solely task-solving" trajectories, where the agent completes the objective with minimal interaction, failing to generate the high turn-count conversations seen in realistic scenarios. To bridge this gap, we shift toward a user-oriented simulation paradigm. By decoupling task generation from a dedicated user simulator that mimics human behavioral rules - such as incremental request-making and turn-by-turn feedback - we facilitate more authentic, extended multi-turn dialogues that reflect the iterative nature of real-world problem solving. Our generation pipeline operates as a versatile, plug-and-play module capable of initiating generation from any state, ensuring high scalability in producing extended tool-use data. Furthermore, by facilitating multiple task completions within a single trajectory, it yields a high-density dataset that reflects the multifaceted demands of real-world human-agent interaction.
Abstract:We introduce Solar Open, a 102B-parameter bilingual Mixture-of-Experts language model for underserved languages. Solar Open demonstrates a systematic methodology for building competitive LLMs by addressing three interconnected challenges. First, to train effectively despite data scarcity for underserved languages, we synthesize 4.5T tokens of high-quality, domain-specific, and RL-oriented data. Second, we coordinate this data through a progressive curriculum jointly optimizing composition, quality thresholds, and domain coverage across 20 trillion tokens. Third, to enable reasoning capabilities through scalable RL, we apply our proposed framework SnapPO for efficient optimization. Across benchmarks in English and Korean, Solar Open achieves competitive performance, demonstrating the effectiveness of this methodology for underserved language AI development.
Abstract:In this letter, we investigate rural large-scale path loss models based on the measurements in a central area of South Korea (rural area) in spring. In particular, we develop new close-in (CI) path loss models incorporating a diffraction component. The transmitter used in the measurement system is located on a hill and utilizes omnidirectional antennas operating at 1400 and 2250 MHz frequencies. The receiver is also equipped with omnidirectional antennas and measures at positions totaling 3,858 (1,262 positions for LOS and 2,596 positions for NLOS) and 4,957 (1,427 positions for LOS and 3,530 positions for NLOS) for 1400 and 2250 MHz, respectively. This research demonstrates that the newly developed CI path loss models incorporating a diffraction component significantly reduce standard deviations (STD) and are independent of frequency, especially for LOS beyond the first meter of propagation, making them suitable for use with frequencies up to a millimeter-wave.