Abstract:Generative language models are increasingly being subjected to psychometric questionnaires intended for human testing, in efforts to establish their traits, as benchmarks for alignment, or to simulate participants in social science experiments. While this growing body of work sheds light on the likeness of model responses to those of humans, concerns are warranted regarding the rigour and reproducibility with which these experiments may be conducted. Instabilities in model outputs, sensitivity to prompt design, parameter settings, and a large number of available model versions increase documentation requirements. Consequently, generalization of findings is often complex and reproducibility is far from guaranteed. In this paper, we present R.U.Psycho, a framework for designing and running robust and reproducible psychometric experiments on generative language models that requires limited coding expertise. We demonstrate the capability of our framework on a variety of psychometric questionnaires, which lend support to prior findings in the literature. R.U.Psycho is available as a Python package at https://github.com/julianschelb/rupsycho.
Abstract:Tag-Pag is an application designed to simplify the categorization of web pages, a task increasingly common for researchers who scrape web pages to analyze individuals' browsing patterns or train machine learning classifiers. Unlike existing tools that focus on annotating sections of text, Tag-Pag systematizes page-level annotations, allowing users to determine whether an entire document relates to one or multiple predefined topics. Tag-Pag offers an intuitive interface to configure the input web pages and annotation labels. It integrates libraries to extract content from the HTML and URL indicators to aid the annotation process. It provides direct access to both scraped and live versions of the web page. Our tool is designed to expedite the annotation process with features like quick navigation, label assignment, and export functionality, making it a versatile and efficient tool for various research applications. Tag-Pag is available at https://github.com/Pantonius/TagPag.
Abstract:Researchers in the political and social sciences often rely on classification models to analyze trends in information consumption by examining browsing histories of millions of webpages. Automated scalable methods are necessary due to the impracticality of manual labeling. In this paper, we model the detection of topic-related content as a binary classification task and compare the accuracy of fine-tuned pre-trained encoder models against in-context learning strategies. Using only a few hundred annotated data points per topic, we detect content related to three German policies in a database of scraped webpages. We compare multilingual and monolingual models, as well as zero and few-shot approaches, and investigate the impact of negative sampling strategies and the combination of URL & content-based features. Our results show that a small sample of annotated data is sufficient to train an effective classifier. Fine-tuning encoder-based models yields better results than in-context learning. Classifiers using both URL & content-based features perform best, while using URLs alone provides adequate results when content is unavailable.