Abstract:We introduce a novel deep learning method for detection of individual trees in urban environments using high-resolution multispectral aerial imagery. We use a convolutional neural network to regress a confidence map indicating the locations of individual trees, which are localized using a peak finding algorithm. Our method provides complete spatial coverage by detecting trees in both public and private spaces, and can scale to very large areas. In our study area spanning five cities in Southern California, we achieved an F-score of 0.735 and an RMSE of 2.157 m. We used our method to produce a map of all trees in the urban forest of California, indicating the potential for our method to support future urban forestry studies at unprecedented scales.
Abstract:Accurately predicting sea-surface temperature weeks to months into the future is an important step toward long term weather forecasting. Standard atmosphere-ocean coupled numerical models provide accurate sea-surface forecasts on the scale of a few days to a few weeks, but many important weather systems require greater foresight. In this paper we propose machine-learning approaches sea-surface temperature forecasting that are accurate on the scale of dozens of weeks. Our approach is based in Koopman operator theory, a useful tool for dynamical systems modelling. With this approach, we predict sea surface temperature in the Gulf of Mexico up to 180 days into the future based on a present image of thermal conditions and three years of historical training data. We evaluate the combination of a basic Koopman method with a convolutional autoencoder, and a newly proposed "consistent Koopman" method, in various permutations. We show that the Koopman approach consistently outperforms baselines, and we discuss the utility of our additional assumptions and methods in this sea-surface temperature domain.