Abstract:In industrial and environmental monitoring, achieving real-time and precise fluid flow measurement remains a critical challenge. This study applies linear quantization in FPGA-based soft sensors for fluid flow estimation, significantly enhancing Neural Network model precision by overcoming the limitations of traditional fixed-point quantization. Our approach achieves up to a 10.10% reduction in Mean Squared Error and a notable 9.39% improvement in inference speed through targeted hardware optimizations. Validated across multiple data sets, our findings demonstrate that the optimized FPGA-based quantized models can provide efficient, accurate real-time inference, offering a viable alternative to cloud-based processing in pervasive autonomous systems.