Abstract:As AI systems increasingly make critical decisions, deceptive AI poses a significant challenge to trust and safety. We present Self-Other Overlap (SOO) fine-tuning, a promising approach in AI Safety that could substantially improve our ability to build honest artificial intelligence. Inspired by cognitive neuroscience research on empathy, SOO aims to align how AI models represent themselves and others. Our experiments on LLMs with 7B, 27B, and 78B parameters demonstrate SOO's efficacy: deceptive responses of Mistral-7B-Instruct-v0.2 dropped from 73.6% to 17.2% with no observed reduction in general task performance, while in Gemma-2-27b-it and CalmeRys-78B-Orpo-v0.1 deceptive responses were reduced from 100% to 9.3% and 2.7%, respectively, with a small impact on capabilities. In reinforcement learning scenarios, SOO-trained agents showed significantly reduced deceptive behavior. SOO's focus on contrastive self and other-referencing observations offers strong potential for generalization across AI architectures. While current applications focus on language models and simple RL environments, SOO could pave the way for more trustworthy AI in broader domains. Ethical implications and long-term effects warrant further investigation, but SOO represents a significant step forward in AI safety research.
Abstract:Self-models have been a topic of great interest for decades in studies of human cognition and more recently in machine learning. Yet what benefits do self-models confer? Here we show that when artificial networks learn to predict their internal states as an auxiliary task, they change in a fundamental way. To better perform the self-model task, the network learns to make itself simpler, more regularized, more parameter-efficient, and therefore more amenable to being predictively modeled. To test the hypothesis of self-regularizing through self-modeling, we used a range of network architectures performing three classification tasks across two modalities. In all cases, adding self-modeling caused a significant reduction in network complexity. The reduction was observed in two ways. First, the distribution of weights was narrower when self-modeling was present. Second, a measure of network complexity, the real log canonical threshold (RLCT), was smaller when self-modeling was present. Not only were measures of complexity reduced, but the reduction became more pronounced as greater training weight was placed on the auxiliary task of self-modeling. These results strongly support the hypothesis that self-modeling is more than simply a network learning to predict itself. The learning has a restructuring effect, reducing complexity and increasing parameter efficiency. This self-regularization may help explain some of the benefits of self-models reported in recent machine learning literature, as well as the adaptive value of self-models to biological systems. In particular, these findings may shed light on the possible interaction between the ability to model oneself and the ability to be more easily modeled by others in a social or cooperative context.
Abstract:In this paper, we investigate the degree to which fine-tuning in Large Language Models (LLMs) effectively mitigates versus merely conceals undesirable behavior. Through the lens of semi-realistic role-playing exercises designed to elicit such behaviors, we explore the response dynamics of LLMs post fine-tuning interventions. Our methodology involves prompting models for Chain-of-Thought (CoT) reasoning and analyzing the coherence between the reasoning traces and the resultant outputs. Notably, we identify a pervasive phenomenon we term \emph{reason-based deception}, where models either stop producing reasoning traces or produce seemingly ethical reasoning traces that belie the unethical nature of their final outputs. We further examine the efficacy of response strategies (polite refusal versus explicit rebuttal) in curbing the occurrence of undesired behavior in subsequent outputs of multi-turn interactions. Our findings reveal that explicit rebuttals significantly outperform polite refusals in preventing the continuation of undesired outputs and nearly eliminate reason-based deception, challenging current practices in model fine-tuning. Accordingly, the two key contributions of this paper are (1) defining and studying reason-based deception, a new type of hidden behavior, and (2) demonstrating that rebuttals provide a more robust response model to harmful requests than refusals, thereby highlighting the need to reconsider the response strategies in fine-tuning approaches.