Abstract:The space communications industry is challenged to develop a technology that can deliver broadband services to user terminals equipped with miniature antennas, such as handheld devices. One potential solution to establish links with ground users is the deployment of massive antennas in one single spacecraft. However, this is not cost-effective. Aligning with recent \emph{NewSpace} activities directed toward miniaturization, mass production, and a significant reduction in spacecraft launch costs, an alternative could be distributed beamforming from multiple satellites. In this context, we propose a distributed beamforming modeling technique for wideband signals. We also consider the statistical behavior of the relative geometry of the swarm nodes. The paper assesses the proposed technique via computer simulations, providing interesting results on the beamforming gains in terms of power and the security of the communication against potential eavesdroppers at non-intended pointing angles. This approach paves the way for further exploration of wideband distributed beamforming from satellite swarms in several future communication applications.
Abstract:This paper jointly designs linear precoding (LP) and codebook-based beamforming implemented in a satellite with massive multiple-input multiple-output (mMIMO) antenna technology. The codebook of beamforming weights is built using the columns of the discrete Fourier transform (DFT) matrix, and the resulting joint design maximizes the achievable throughput under limited transmission power. The corresponding optimization problem is first formulated as a mixed integer non-linear programming (MINP). To adequately address this challenging problem, an efficient LP and DFT-based beamforming algorithm are developed by utilizing several optimization tools, such as the weighted minimum mean square error transformation, duality method, and Hungarian algorithm. In addition, a greedy algorithm is proposed for benchmarking. A complexity analysis of these solutions is provided along with a comprehensive set of Monte Carlo simulations demonstrating the efficiency of our proposed algorithms.