Abstract:Improving connectivity and completeness are the most challenging aspects of small liver vessel segmentation. It is difficult for existing methods to obtain segmented liver vessel trees simultaneously with continuous geometry and detail in small vessels. We proposed a diffusion model-based method with a multi-scale graph attention guidance to break through the bottleneck to segment the liver vessels. Experiments show that the proposed method outperforms the other state-of-the-art methods used in this study on two public datasets of 3D-ircadb-01 and LiVS. Dice coefficient and Sensitivity are improved by at least 11.67% and 24.21% on 3D-ircadb-01 dataset, and are improved by at least 3.21% and 9.11% on LiVS dataset. Connectivity is also quantitatively evaluated in this study and our method performs best. The proposed method is reliable for small liver vessel segmentation.
Abstract:A number of computer vision deep regression approaches report improved results when adding a classification loss to the regression loss. Here, we explore why this is useful in practice and when it is beneficial. To do so, we start from precisely controlled dataset variations and data samplings and find that the effect of adding a classification loss is the most pronounced for regression with imbalanced data. We explain these empirical findings by formalizing the relation between the balanced and imbalanced regression losses. Finally, we show that our findings hold on two real imbalanced image datasets for depth estimation (NYUD2-DIR), and age estimation (IMDB-WIKI-DIR), and on the problem of imbalanced video progress prediction (Breakfast). Our main takeaway is: for a regression task, if the data sampling is imbalanced, then add a classification loss.
Abstract:Activity progress prediction aims to estimate what percentage of an activity has been completed. Currently this is done with machine learning approaches, trained and evaluated on complicated and realistic video datasets. The videos in these datasets vary drastically in length and appearance. And some of the activities have unanticipated developments, making activity progression difficult to estimate. In this work, we examine the results obtained by existing progress prediction methods on these datasets. We find that current progress prediction methods seem not to extract useful visual information for the progress prediction task. Therefore, these methods fail to exceed simple frame-counting baselines. We design a precisely controlled dataset for activity progress prediction and on this synthetic dataset we show that the considered methods can make use of the visual information, when this directly relates to the progress prediction. We conclude that the progress prediction task is ill-posed on the currently used real-world datasets. Moreover, to fairly measure activity progression we advise to consider a, simple but effective, frame-counting baseline.