Abstract:Trajectory optimization problems for legged robots are commonly formulated with fixed contact schedules. These multi-phase Hybrid Trajectory Optimization (HTO) methods result in locally optimal trajectories, but the result depends heavily upon the predefined contact mode sequence. Contact-Implicit Optimization (CIO) offers a potential solution to this issue by allowing the contact mode to be determined throughout the trajectory by the optimization solver. However, CIO suffers from long solve times and convergence issues. This work combines the benefits of these two methods into one algorithm: Staged Contact Optimization (SCO). SCO tightens constraints on contact in stages, eventually fixing them to allow robust and fast convergence to a feasible solution. Results on a planar biped and spatial quadruped demonstrate speed and optimality improvements over CIO and HTO. These properties make SCO well suited for offline trajectory generation or as an effective tool for exploring the dynamic capabilities of a robot.
Abstract:Legged robots leverage ground contacts and the reaction forces they provide to achieve agile locomotion. However, uncertainty coupled with contact discontinuities can lead to failure, especially in real-world environments with unexpected height variations such as rocky hills or curbs. To enable dynamic traversal of extreme terrain, this work introduces 1) a proprioception-based gait planner for estimating unknown hybrid events due to elevation changes and responding by modifying contact schedules and planned footholds online, and 2) a two-degree-of-freedom tail for improving contact-independent control and a corresponding decoupled control scheme for better versatility and efficiency. Simulation results show that the gait planner significantly improves stability under unforeseen terrain height changes compared to methods that assume fixed contact schedules and footholds. Further, testing shows the tail is most effective at maintaining stability when encountering a terrain change with an initial angular disturbance. The results show that these approaches work synergistically to stabilize locomotion with elevation changes up to 1.5 times the leg length and tilted initial states.
Abstract:This work introduces a formulation of model predictive control (MPC) which adaptively reasons about the complexity of the model based on the task while maintaining feasibility and stability guarantees. Existing MPC implementations often handle computational complexity by shortening prediction horizons or simplifying models, both of which can result in instability. Inspired by related approaches in behavioral economics, motion planning, and biomechanics, our method solves MPC problems with a simple model for dynamics and constraints over regions of the horizon where such a model is feasible and a complex model where it is not. The approach leverages an interleaving of planning and execution to iteratively identify these regions, which can be safely simplified if they satisfy an exact template/anchor relationship. We show that this method does not compromise the stability and feasibility properties of the system, and measure performance in simulation experiments on a quadrupedal robot executing agile behaviors over terrains of interest. We find that this adaptive method enables more agile motion and expands the range of executable tasks compared to fixed-complexity implementations.