Abstract:Magnetic resonance imaging (MRI) is a widely known medical imaging technique used to assess the heart function. Deep learning (DL) models perform several tasks in cardiac MRI (CMR) images with good efficacy, such as segmentation, estimation, and detection of diseases. Many DL models based on convolutional neural networks (CNN) were improved by detecting regions-of-interest (ROI) either automatically or by hand. In this paper we describe Visual-Motion-Focus (VMF), a module that detects the heart motion in the 4D MRI sequence, and highlights ROIs by focusing a Radial Basis Function (RBF) on the estimated motion field. We experimented and evaluated VMF on three CMR datasets, observing that the proposed ROIs cover 99.7% of data labels (Recall score), improved the CNN segmentation (mean Dice score) by 1.7 (p < .001) after the ROI extraction, and improved the overall training speed by 2.5 times (+150%).
Abstract:Soybean is one of the ten greatest crops in the world, answering for billion-dollar businesses every year. This crop suffers from insect herbivory that costs millions from producers. Hence, constant monitoring of the crop foliar damage is necessary to guide the application of insecticides. However, current methods to measure foliar damage are expensive and dependent on laboratory facilities, in some cases, depending on complex devices. To cope with these shortcomings, we introduce an image processing methodology to measure the foliar damage in soybean leaves. We developed a non-destructive imaging method based on two techniques, Otsu segmentation and Bezier curves, to estimate the foliar loss in leaves with or without border damage. We instantiate our methodology in a mobile application named BioLeaf, which is freely distributed for smartphone users. We experimented with real-world leaves collected from a soybean crop in Brazil. Our results demonstrated that BioLeaf achieves foliar damage quantification with precision comparable to that of human specialists. With these results, our proposal might assist soybean producers, reducing the time to measure foliar damage, reducing analytical costs, and defining a commodity application that is applicable not only to soy, but also to different crops such as cotton, bean, potato, coffee, and vegetables.