Abstract:This work explores the capacities of character-based Neural Machine Translation to translate noisy User-Generated Content (UGC) with a strong focus on exploring the limits of such approaches to handle productive UGC phenomena, which almost by definition, cannot be seen at training time. Within a strict zero-shot scenario, we first study the detrimental impact on translation performance of various user-generated content phenomena on a small annotated dataset we developed, and then show that such models are indeed incapable of handling unknown letters, which leads to catastrophic translation failure once such characters are encountered. We further confirm this behavior with a simple, yet insightful, copy task experiment and highlight the importance of reducing the vocabulary size hyper-parameter to increase the robustness of character-based models for machine translation.
Abstract:This work takes a critical look at the evaluation of user-generated content automatic translation, the well-known specificities of which raise many challenges for MT. Our analyses show that measuring the average-case performance using a standard metric on a UGC test set falls far short of giving a reliable image of the UGC translation quality. That is why we introduce a new data set for the evaluation of UGC translation in which UGC specificities have been manually annotated using a fine-grained typology. Using this data set, we conduct several experiments to measure the impact of different kinds of UGC specificities on translation quality, more precisely than previously possible.