Abstract:We propose a new incremental aggregation algorithm for multi-image deblurring with automatic image selection. The primary motivation is that current bursts deblurring methods do not handle well situations in which misalignment or out-of-context frames are present in the burst. These real-life situations result in poor reconstructions or manual selection of the images that will be used to deblur. Automatically selecting best frames within the burst to improve the base reconstruction is challenging because the amount of possible images fusions is equal to the power set cardinal. Here, we approach the multi-image deblurring problem as a two steps process. First, we successfully learn a comparison function to rank a burst of images using a deep convolutional neural network. Then, an incremental Fourier burst accumulation with a reconstruction degradation mechanism is applied fusing only less blurred images that are sufficient to maximize the reconstruction quality. Experiments with the proposed algorithm have shown superior results when compared to other similar approaches, outperforming other methods described in the literature in previously described situations. We validate our findings on several synthetic and real datasets.
Abstract:ColorCheckers are reference standards that professional photographers and filmmakers use to ensure predictable results under every lighting condition. The objective of this work is to propose a new fast and robust method for automatic ColorChecker detection. The process is divided into two steps: (1) ColorCheckers localization and (2) ColorChecker patches recognition. For the ColorChecker localization, we trained a detection convolutional neural network using synthetic images. The synthetic images are created with the 3D models of the ColorChecker and different background images. The output of the neural networks are the bounding box of each possible ColorChecker candidates in the input image. Each bounding box defines a cropped image which is evaluated by a recognition system, and each image is canonized with regards to color and dimensions. Subsequently, all possible color patches are extracted and grouped with respect to the center's distance. Each group is evaluated as a candidate for a ColorChecker part, and its position in the scene is estimated. Finally, a cost function is applied to evaluate the accuracy of the estimation. The method is tested using real and synthetic images. The proposed method is fast, robust to overlaps and invariant to affine projections. The algorithm also performs well in case of multiple ColorCheckers detection.
Abstract:We present a method for automated segmentation of the vasculature in retinal images. The method produces segmentations by classifying each image pixel as vessel or non-vessel, based on the pixel's feature vector. Feature vectors are composed of the pixel's intensity and continuous two-dimensional Morlet wavelet transform responses taken at multiple scales. The Morlet wavelet is capable of tuning to specific frequencies, thus allowing noise filtering and vessel enhancement in a single step. We use a Bayesian classifier with class-conditional probability density functions (likelihoods) described as Gaussian mixtures, yielding a fast classification, while being able to model complex decision surfaces and compare its performance with the linear minimum squared error classifier. The probability distributions are estimated based on a training set of labeled pixels obtained from manual segmentations. The method's performance is evaluated on publicly available DRIVE and STARE databases of manually labeled non-mydriatic images. On the DRIVE database, it achieves an area under the receiver operating characteristic (ROC) curve of 0.9598, being slightly superior than that presented by the method of Staal et al.