Abstract:Providing fast and accurate resolution to the student's query is an essential solution provided by Edtech organizations. This is generally provided with a chat-bot like interface to enable students to ask their doubts easily. One preferred format for student queries is images, as it allows students to capture and post questions without typing complex equations and information. However, this format also presents difficulties, as images may contain multiple questions or textual noise that lowers the accuracy of existing single-query answering solutions. In this paper, we propose a method for extracting questions from text or images using a BERT-based deep learning model and compare it to the other rule-based and layout-based methods. Our method aims to improve the accuracy and efficiency of student query resolution in Edtech organizations.
Abstract:The advances in Artificial Intelligence (AI) and Machine Learning (ML) have opened up many avenues for scientific research, and are adding new dimensions to the process of knowledge creation. However, even the most powerful and versatile of ML applications till date are primarily in the domain of analysis of associations and boil down to complex data fitting. Judea Pearl has pointed out that Artificial General Intelligence must involve interventions involving the acts of doing and imagining. Any machine assisted scientific discovery thus must include casual analysis and interventions. In this context, we propose a causal learning model of physical principles, which not only recognizes correlations but also brings out casual relationships. We use the principles of causal inference and interventions to study the cause-and-effect relationships in the context of some well-known physical phenomena. We show that this technique can not only figure out associations among data, but is also able to correctly ascertain the cause-and-effect relations amongst the variables, thereby strengthening (or weakening) our confidence in the proposed model of the underlying physical process.