Abstract:This paper delves into various robotic manipulation control methods designed for dynamic contact tooling operations on a robotic repair platform. The explored control strategies include hybrid position-force control, admittance control, bilateral telerobotic control, virtual fixture, and shared control. Each approach is elucidated and assessed in terms of its applicability and effectiveness for handling contact tooling tasks in real-world repair scenarios. The hybrid position-force controller is highlighted for its proficiency in executing precise force-required tasks, but it demands contingent on an accurate model of the environment and structured, static environment. In contrast, for unstructured environments, bilateral teleoperation control is investigated, revealing that the compliance with the remote robot controller is crucial for stable contact, albeit at the expense of reduced motion tracking performance. Moreover, advanced controllers for tooling manipulation tasks, such as virtual fixture and shared control approaches, are investigated for their potential applications.
Abstract:This paper introduces a dual-arm telerobotic platform designed to efficiently and safely execute hot cell operations for nuclear waste disposition at EM sites. The proposed system consists of a remote robot arm platform and a teleoperator station, both integrated with a software architecture to control the entire system. The dual-arm configuration of the remote platform enhances versatility and task performance in complex and hazardous environments, ensuring precise manipulation and effective handling of nuclear waste materials. The integration of a teleoperator station enables human teleoperator to remotely control the entire system real-time, enhancing decision-making capabilities, situational awareness, and dexterity. The control software plays a crucial role in our system, providing a robust and intuitive interface for the teleoperator. Test operation results demonstrate the system's effectiveness in operating as a remote hotbox for nuclear waste disposition, showcasing its potential applicability in real EM sites.
Abstract:This paper presents a bimanual haptic display based on collaborative robot arms. We address the limitations of existing robot arm-based haptic displays by optimizing the setup configuration and implementing inertia/friction compensation techniques. The optimized setup configuration maximizes workspace coverage, dexterity, and haptic feedback capability while ensuring collision safety. Inertia/friction compensation significantly improve transparency and reduce user fatigue, leading to a more seamless and transparent interaction. The effectiveness of our system is demonstrated in various applications, including bimanual bilateral teleoperation in both real and simulated environments. This research contributes to the advancement of haptic technology by presenting a practical and effective solution for creating high-performance bimanual haptic displays using collaborative robot arms.