Abstract:Intracranial Hemorrhage is a potentially lethal condition whose manifestation is vastly diverse and shifts across clinical centers worldwide. Deep-learning-based solutions are starting to model complex relations between brain structures, but still struggle to generalize. While gathering more diverse data is the most natural approach, privacy regulations often limit the sharing of medical data. We propose the first application of Federated Scene Graph Generation. We show that our models can leverage the increased training data diversity. For Scene Graph Generation, they can recall up to 20% more clinically relevant relations across datasets compared to models trained on a single centralized dataset. Learning structured data representation in a federated setting can open the way to the development of new methods that can leverage this finer information to regularize across clients more effectively.
Abstract:FrOoDo is an easy-to-use and flexible framework for Out-of-Distribution detection tasks in digital pathology. It can be used with PyTorch classification and segmentation models, and its modular design allows for easy extension. The goal is to automate the task of OoD Evaluation such that research can focus on the main goal of either designing new models, new methods or evaluating a new dataset. The code can be found at https://github.com/MECLabTUDA/FrOoDo.