Abstract:Intracranial Hemorrhage is a potentially lethal condition whose manifestation is vastly diverse and shifts across clinical centers worldwide. Deep-learning-based solutions are starting to model complex relations between brain structures, but still struggle to generalize. While gathering more diverse data is the most natural approach, privacy regulations often limit the sharing of medical data. We propose the first application of Federated Scene Graph Generation. We show that our models can leverage the increased training data diversity. For Scene Graph Generation, they can recall up to 20% more clinically relevant relations across datasets compared to models trained on a single centralized dataset. Learning structured data representation in a federated setting can open the way to the development of new methods that can leverage this finer information to regularize across clients more effectively.
Abstract:Whole-body CT is used for multi-trauma patients in the search of any and all injuries. Since an initial assessment needs to be rapid and the search for lesions is done for the whole body, very little time can be allocated for the inspection of a specific anatomy. In particular, intracranial hemorrhages are still missed, especially by clinical students. In this work, we present a Deep Learning approach for highlighting such lesions to improve the diagnostic accuracy. While most works on intracranial hemorrhages perform segmentation, detection only requires bounding boxes for the localization of the bleeding. In this paper, we propose a novel Voxel-Complete IoU (VC-IoU) loss that encourages the network to learn the 3D aspect ratios of bounding boxes and leads to more precise detections. We extensively experiment on brain bleeding detection using a publicly available dataset, and validate it on a private cohort, where we achieve 0.877 AR30, 0.728 AP30, and 0.653 AR30, 0.514 AP30 respectively. These results constitute a relative +5% improvement in Average Recall for both datasets compared to other loss functions. Finally, as there is little data currently publicly available for 3D object detection and as annotation resources are limited in the clinical setting, we evaluate the cost of different annotation methods, as well as the impact of imprecise bounding boxes in the training data on the detection performance.
Abstract:Patients with Intracranial Hemorrhage (ICH) face a potentially life-threatening condition, and patient-centered individualized treatment remains challenging due to possible clinical complications. Deep-Learning-based methods can efficiently analyze the routinely acquired head CTs to support the clinical decision-making. The majority of early work focuses on the detection and segmentation of ICH, but do not model the complex relations between ICH and adjacent brain structures. In this work, we design a tailored object detection method for ICH, which we unite with segmentation-grounded Scene Graph Generation (SGG) methods to learn a holistic representation of the clinical cerebral scene. To the best of our knowledge, this is the first application of SGG for 3D voxel images. We evaluate our method on two head-CT datasets and demonstrate that our model can recall up to 74% of clinically relevant relations. This work lays the foundation towards SGG for 3D voxel data. The generated Scene Graphs can already provide insights for the clinician, but are also valuable for all downstream tasks as a compact and interpretable representation.