Abstract:The growing reliance on renewable energy sources, particularly solar and wind, has introduced challenges due to their uncontrollable production. This complicates maintaining the electrical grid balance, prompting some transmission system operators in Western Europe to implement imbalance tariffs that penalize unsustainable power deviations. These tariffs create an implicit demand response framework to mitigate grid instability. Yet, several challenges limit active participation. In Belgium, for example, imbalance prices are only calculated at the end of each 15-minute settlement period, creating high risk due to price uncertainty. This risk is further amplified by the inherent volatility of imbalance prices, discouraging participation. Although transmission system operators provide minute-based price predictions, the system imbalance volatility makes accurate price predictions challenging to obtain and requires sophisticated techniques. Moreover, publishing price estimates can prompt participants to adjust their schedules, potentially affecting the system balance and the final price, adding further complexity. To address these challenges, we propose a Monte Carlo Tree Search method that publishes accurate imbalance prices while accounting for potential response actions. Our approach models the system dynamics using a neural network forecaster and a cluster of virtual batteries controlled by reinforcement learning agents. Compared to Belgium's current publication method, our technique improves price accuracy by 20.4% under ideal conditions and by 12.8% in more realistic scenarios. This research addresses an unexplored, yet crucial problem, positioning this paper as a pioneering work in analyzing the potential of more advanced imbalance price publishing techniques.
Abstract:Keeping the balance between electricity generation and consumption is becoming increasingly challenging and costly, mainly due to the rising share of renewables, electric vehicles and heat pumps and electrification of industrial processes. Accurate imbalance forecasts, along with reliable uncertainty estimations, enable transmission system operators (TSOs) to dispatch appropriate reserve volumes, reducing balancing costs. Further, market parties can use these probabilistic forecasts to design strategies that exploit asset flexibility to help balance the grid, generating revenue with known risks. Despite its importance, literature regarding system imbalance (SI) forecasting is limited. Further, existing methods do not focus on situations with high imbalance magnitude, which are crucial to forecast accurately for both TSOs and market parties. Hence, we propose an ensemble of C-VSNs, which are our adaptation of variable selection networks (VSNs). Each minute, our model predicts the imbalance of the current and upcoming two quarter-hours, along with uncertainty estimations on these forecasts. We evaluate our approach by forecasting the imbalance of Belgium, where high imbalance magnitude is defined as $|$SI$| > 500\,$MW (occurs 1.3% of the time in Belgium). For high imbalance magnitude situations, our model outperforms the state-of-the-art by 23.4% (in terms of continuous ranked probability score (CRPS), which evaluates probabilistic forecasts), while also attaining a 6.5% improvement in overall CRPS. Similar improvements are achieved in terms of root-mean-squared error. Additionally, we developed a fine-tuning methodology to effectively include new inputs with limited history in our model. This work was performed in collaboration with Elia (the Belgian TSO) to further improve their imbalance forecasts, demonstrating the relevance of our work.
Abstract:Increasingly, homeowners opt for photovoltaic (PV) systems and/or battery storage to minimize their energy bills and maximize renewable energy usage. This has spurred the development of advanced control algorithms that maximally achieve those goals. However, a common challenge faced while developing such controllers is the unavailability of accurate forecasts of household power consumption, especially for shorter time resolutions (15 minutes) and in a data-efficient manner. In this paper, we analyze how transfer learning can help by exploiting data from multiple households to improve a single house's load forecasting. Specifically, we train an advanced forecasting model (a temporal fusion transformer) using data from multiple different households, and then finetune this global model on a new household with limited data (i.e. only a few days). The obtained models are used for forecasting power consumption of the household for the next 24 hours~(day-ahead) at a time resolution of 15 minutes, with the intention of using these forecasts in advanced controllers such as Model Predictive Control. We show the benefit of this transfer learning setup versus solely using the individual new household's data, both in terms of (i) forecasting accuracy ($\sim$15\% MAE reduction) and (ii) control performance ($\sim$2\% energy cost reduction), using real-world household data.