Abstract:Lablets are autonomous microscopic particles with programmable CMOS electronics that canvcontrol electrokinetic phenomena and electrochemical reactions in solution via actuator and sensor microelectrodes. The lablets are designed to be rechargeable using an integrated supercapacitor, and to allow docking to one another or to a smart surface for interchange of energy, electronic information and chemicals. In this paper, we describe the design and fabrication of singulated lablets (CMOS2) at the scale of 100 by 200 {\mu}m, with the supercap adjacent to the functional lablet and occupying half the space. In other works, we have characterized the supercap and described the electronic design and proven functionality using arrays of these lablets. Here we present fabrication details for integrating functional coatings and the supercap and demonstrate electronic functionality of the lablets following singulation.
Abstract:Microelectronic morphogenesis is the creation and maintenance of complex functional structures by microelectronic information within shape-changing materials. Only recently has in-built information technology begun to be used to reshape materials and their functions in three dimensions to form smart microdevices and microrobots. Electronic information that controls morphology is inheritable like its biological counterpart, genetic information, and is set to open new vistas of technology leading to artificial organisms when coupled with modular design and self-assembly that can make reversible microscopic electrical connections. Three core capabilities of cells in organisms, self-maintenance (homeostatic metabolism utilizing free energy), self-containment (distinguishing self from non-self), and self-reproduction (cell division with inherited properties), once well out of reach for technology, are now within the grasp of information-directed materials. Construction-aware electronics can be used to proof-read and initiate game-changing error correction in microelectronic self-assembly. Furthermore, non-contact communication and electronically supported learning enable one to implement guided self-assembly and enhance functionality. This article reviews the fundamental breakthroughs that have opened the pathway to this prospective path, analyzes the extent and way in which the core properties of life can be addressed and discusses the potential and indeed necessity of such technology for sustainable high technology in society.