Abstract:Language contact is a pervasive phenomenon reflected in the borrowing of words from donor to recipient languages. Most computational approaches to borrowing detection treat all languages under study as equally important, even though dominant languages have a stronger impact on heritage languages than vice versa. We test new methods for lexical borrowing detection in contact situations where dominant languages play an important role, applying two classical sequence comparison methods and one machine learning method to a sample of seven Latin American languages which have all borrowed extensively from Spanish. All methods perform well, with the supervised machine learning system outperforming the classical systems. A review of detection errors shows that borrowing detection could be substantially improved by taking into account donor words with divergent meanings from recipient words.
Abstract:Part-of-speech (POS) tagging is a fundamental component for performing natural language tasks such as parsing, information extraction, and question answering. When POS taggers are trained in one domain and applied in significantly different domains, their performance can degrade dramatically. We present a methodology for rapid adaptation of POS taggers to new domains. Our technique is unsupervised in that a manually annotated corpus for the new domain is not necessary. We use suffix information gathered from large amounts of raw text as well as orthographic information to increase the lexical coverage. We present an experiment in the Biological domain where our POS tagger achieves results comparable to POS taggers specifically trained to this domain.