Abstract:In this work, we present the Text Conditioned Auxiliary Classifier Generative Adversarial Network, (TAC-GAN) a text to image Generative Adversarial Network (GAN) for synthesizing images from their text descriptions. Former approaches have tried to condition the generative process on the textual data; but allying it to the usage of class information, known to diversify the generated samples and improve their structural coherence, has not been explored. We trained the presented TAC-GAN model on the Oxford-102 dataset of flowers, and evaluated the discriminability of the generated images with Inception-Score, as well as their diversity using the Multi-Scale Structural Similarity Index (MS-SSIM). Our approach outperforms the state-of-the-art models, i.e., its inception score is 3.45, corresponding to a relative increase of 7.8% compared to the recently introduced StackGan. A comparison of the mean MS-SSIM scores of the training and generated samples per class shows that our approach is able to generate highly diverse images with an average MS-SSIM of 0.14 over all generated classes.
Abstract:In many real-world application, e.g., speech recognition or sleep stage classification, data are captured over the course of time, constituting a Time-Series. Time-Series often contain temporal dependencies that cause two otherwise identical points of time to belong to different classes or predict different behavior. This characteristic generally increases the difficulty of analysing them. Existing techniques often depended on hand-crafted features that were expensive to create and required expert knowledge of the field. With the advent of Deep Learning new models of unsupervised learning of features for Time-series analysis and forecast have been developed. Such new developments are the topic of this paper: a review of the main Deep Learning techniques is presented, and some applications on Time-Series analysis are summaried. The results make it clear that Deep Learning has a lot to contribute to the field.