Abstract:Recently, progress has been made in the supervised training of Convolutional Object Detectors (e.g. Faster R-CNN) for threat recognition in carry-on luggage using X-ray images. This is part of the Transportation Security Administration's (TSA's) mission to protect air travelers in the United States. While more training data with threats may reliably improve performance for this class of deep algorithm, it is expensive to stage in realistic contexts. By contrast, data from the real world can be collected quickly with minimal cost. In this paper, we present a semi-supervised approach for threat recognition which we call Background Adaptive Faster R-CNN. This approach is a training method for two-stage object detectors which uses Domain Adaptation methods from the field of deep learning. The data sources described earlier make two "domains": a hand-collected data domain of images with threats, and a real-world domain of images assumed without threats. Two domain discriminators, one for discriminating object proposals and one for image features, are adversarially trained to prevent encoding domain-specific information. Without this penalty a Convolutional Neural Network (CNN) can learn to identify domains based on superficial characteristics, and minimize a supervised loss function without improving its ability to recognize objects. For the hand-collected data, only object proposals and image features from backgrounds are used. The losses for these domain-adaptive discriminators are added to the Faster R-CNN losses of images from both domains. This can reduce threat detection false alarm rates by matching the statistics of extracted features from hand-collected backgrounds to real world data. Performance improvements are demonstrated on two independently-collected datasets of labeled threats.
Abstract:For the safety of the traveling public, the Transportation Security Administration (TSA) operates security checkpoints at airports in the United States, seeking to keep dangerous items off airplanes. At these checkpoints, the TSA employs a fleet of X-ray scanners, such as the Rapiscan 620DV, so Transportation Security Officers (TSOs) can inspect the contents of carry-on possessions. However, identifying and locating all potential threats can be a challenging task. As a result, the TSA has taken a recent interest in deep learning-based automated detection algorithms that can assist TSOs. In a collaboration funded by the TSA, we collected a sizable new dataset of X-ray scans with a diverse set of threats in a wide array of contexts, trained several deep convolutional object detection models, and integrated such models into the Rapiscan 620DV, resulting in functional prototypes capable of operating in real time. We show performance of our models on held-out evaluation sets, analyze several design parameters, and demonstrate the potential of such systems for automated detection of threats that can be found in airports.