Abstract:In this article, we propose the detection of crowd anomalies through the extraction of information in the form of time series from video format using a multimodal approach. Through pattern recognition algorithms and segmentation, informative measures of the number of people and image occupancy are extracted at regular intervals, which are then analyzed to obtain trends and anomalous behaviors. Specifically, through temporal decomposition and residual analysis, intervals or specific situations of unusual behaviors are identified, which can be used in decision-making and improvement of actions in sectors related to human movement such as tourism or security. The application of this methodology on the webcam of Turisme Comunitat Valenciana in the town of Morella (Comunitat Valenciana, Spain) has provided excellent results. It is shown to correctly detect specific anomalous situations and unusual overall increases during the previous weekend and during the festivities in October 2023. These results have been obtained while preserving the confidentiality of individuals at all times by using measures that maximize anonymity, without trajectory recording or person recognition.
Abstract:In this work we propose a new non-monotonic activation function: the modulus. The majority of the reported research on nonlinearities is focused on monotonic functions. We empirically demonstrate how by using the modulus activation function on computer vision tasks the models generalize better than with other nonlinearities - up to a 15% accuracy increase in CIFAR100 and 4% in CIFAR10, relative to the best of the benchmark activations tested. With the proposed activation function the vanishing gradient and dying neurons problems disappear, because the derivative of the activation function is always 1 or -1. The simplicity of the proposed function and its derivative make this solution specially suitable for TinyML and hardware applications.
Abstract:The field of conversational agents is growing fast and there is an increasing need for algorithms that enhance natural interaction. In this work we show how we achieved state of the art results in the Keyword Spotting field by adapting and tweaking the Xception algorithm, which achieved outstanding results in several computer vision tasks. We obtained about 96\% accuracy when classifying audio clips belonging to 35 different categories, beating human annotation at the most complex tasks proposed.
Abstract:Objective: Anemia is a frequent comorbidity in hemodialysis patients that can be successfully treated by administering erythropoiesis-stimulating agents (ESAs). ESAs dosing is currently based on clinical protocols that often do not account for the high inter- and intra-individual variability in the patient's response. As a result, the hemoglobin level of some patients oscillates around the target range, which is associated with multiple risks and side-effects. This work proposes a methodology based on reinforcement learning (RL) to optimize ESA therapy. Methods: RL is a data-driven approach for solving sequential decision-making problems that are formulated as Markov decision processes (MDPs). Computing optimal drug administration strategies for chronic diseases is a sequential decision-making problem in which the goal is to find the best sequence of drug doses. MDPs are particularly suitable for modeling these problems due to their ability to capture the uncertainty associated with the outcome of the treatment and the stochastic nature of the underlying process. The RL algorithm employed in the proposed methodology is fitted Q iteration, which stands out for its ability to make an efficient use of data. Results: The experiments reported here are based on a computational model that describes the effect of ESAs on the hemoglobin level. The performance of the proposed method is evaluated and compared with the well-known Q-learning algorithm and with a standard protocol. Simulation results show that the performance of Q-learning is substantially lower than FQI and the protocol. Conclusion: Although prospective validation is required, promising results demonstrate the potential of RL to become an alternative to current protocols.