Abstract:Deep learning underpins most of the currently advanced natural language processing (NLP) tasks such as textual classification, neural machine translation (NMT), abstractive summarization and question-answering (QA). However, the robustness of the models, particularly QA models, against adversarial attacks is a critical concern that remains insufficiently explored. This paper introduces QA-Attack (Question Answering Attack), a novel word-level adversarial strategy that fools QA models. Our attention-based attack exploits the customized attention mechanism and deletion ranking strategy to identify and target specific words within contextual passages. It creates deceptive inputs by carefully choosing and substituting synonyms, preserving grammatical integrity while misleading the model to produce incorrect responses. Our approach demonstrates versatility across various question types, particularly when dealing with extensive long textual inputs. Extensive experiments on multiple benchmark datasets demonstrate that QA-Attack successfully deceives baseline QA models and surpasses existing adversarial techniques regarding success rate, semantics changes, BLEU score, fluency and grammar error rate.
Abstract:Recent advances in deep learning research have shown remarkable achievements across many tasks in computer vision (CV) and natural language processing (NLP). At the intersection of CV and NLP is the problem of image captioning, where the related models' robustness against adversarial attacks has not been well studied. In this paper, we present a novel adversarial attack strategy, which we call AICAttack (Attention-based Image Captioning Attack), designed to attack image captioning models through subtle perturbations on images. Operating within a black-box attack scenario, our algorithm requires no access to the target model's architecture, parameters, or gradient information. We introduce an attention-based candidate selection mechanism that identifies the optimal pixels to attack, followed by Differential Evolution (DE) for perturbing pixels' RGB values. We demonstrate AICAttack's effectiveness through extensive experiments on benchmark datasets with multiple victim models. The experimental results demonstrate that our method surpasses current leading-edge techniques by effectively distributing the alignment and semantics of words in the output.
Abstract:Online ride-hailing services have become a prevalent transportation system across the world. In this paper, we study a challenging problem of how to direct vacant taxis around a city such that supplies and demands can be balanced in online ride-hailing services. We design a new reward scheme that considers multiple performance metrics of online ride-hailing services. We also propose a novel deep reinforcement learning method named Deep-Q-Network with Action Mask (AM-DQN) masking off unnecessary actions in various locations such that agents can learn much faster and more efficiently. We conduct extensive experiments using a city-scale dataset from Chicago. Several popular heuristic and learning methods are also implemented as baselines for comparison. The results of the experiments show that the AM-DQN attains the best performances of all methods with respect to average failure rate, average waiting time for customers, and average idle search time for vacant taxis.
Abstract:In this paper, we study a challenging problem of how to pool multiple ride-share trip requests in real time under an uncertain environment. The goals are better performance metrics of efficiency and acceptable satisfaction of riders. To solve the problem effectively, an objective function that compromises the benefits and losses of dynamic ridesharing service is proposed. The Polar Coordinates based Ride-Matching strategy (PCRM) that can adapt to the satisfaction of riders on board is also addressed. In the experiment, large scale data sets from New York City (NYC) are applied. We do a case study to identify the best set of parameters of the dynamic ridesharing service with a training set of 135,252 trip requests. In addition, we also use a testing set containing 427,799 trip requests and two state-of-the-art approaches as baselines to estimate the effectiveness of our method. The experimental results show that on average 38% of traveling distance can be saved, nearly 100% of passengers can be served and each rider only spends an additional 3.8 minutes in ridesharing trips compared to single rider service.