Abstract:Online ride-hailing services have become a prevalent transportation system across the world. In this paper, we study a challenging problem of how to direct vacant taxis around a city such that supplies and demands can be balanced in online ride-hailing services. We design a new reward scheme that considers multiple performance metrics of online ride-hailing services. We also propose a novel deep reinforcement learning method named Deep-Q-Network with Action Mask (AM-DQN) masking off unnecessary actions in various locations such that agents can learn much faster and more efficiently. We conduct extensive experiments using a city-scale dataset from Chicago. Several popular heuristic and learning methods are also implemented as baselines for comparison. The results of the experiments show that the AM-DQN attains the best performances of all methods with respect to average failure rate, average waiting time for customers, and average idle search time for vacant taxis.
Abstract:In this paper, we study a challenging problem of how to pool multiple ride-share trip requests in real time under an uncertain environment. The goals are better performance metrics of efficiency and acceptable satisfaction of riders. To solve the problem effectively, an objective function that compromises the benefits and losses of dynamic ridesharing service is proposed. The Polar Coordinates based Ride-Matching strategy (PCRM) that can adapt to the satisfaction of riders on board is also addressed. In the experiment, large scale data sets from New York City (NYC) are applied. We do a case study to identify the best set of parameters of the dynamic ridesharing service with a training set of 135,252 trip requests. In addition, we also use a testing set containing 427,799 trip requests and two state-of-the-art approaches as baselines to estimate the effectiveness of our method. The experimental results show that on average 38% of traveling distance can be saved, nearly 100% of passengers can be served and each rider only spends an additional 3.8 minutes in ridesharing trips compared to single rider service.
Abstract:In this paper we address the problem of coalition formation in hedonic context. Our modelling tries to be as realistic as possible. In previous models, once an agent joins a coalition it would not be able to leave the coalition and join the new one; in this research we made it possible to leave a coalition but put some restrictions to control the behavior of agents. Leaving or staying of an agent in a coalition will affect on the trust of the other agents included in this coalition. Agents will use the trust values in computing the expected utility of coalitions. Three different risk behaviors are introduced for agents that want to initiate a coalition. Using these risk behaviors, some simulations are made and results are analyzed.