Abstract:Metallic mesh is a transparent electromagnetic shielding film with a fine metal line structure. However, it can develop defects that affect the optoelectronic performance whether in the production preparation or in actual use. The development of in-situ non-destructive testing (NDT) devices for metallic mesh requires long working distances, reflective optical path design, and miniaturization. To address the limitations of existing smartphone microscopes, which feature short working distances and inadequate transmission imaging for industrial in-situ inspection, we propose a novel long-working distance reflective smartphone microscopy system (LD-RSM). LD-RSM builds a 4f optical imaging system with external optical components and a smartphone, utilizing a beam splitter to achieve reflective imaging with the illumination system and imaging system on the same side of the sample. It achieves an optical resolution of 4.92$\mu$m and a working distance of up to 22.23 mm. Additionally, we introduce a dual prior weighted Robust Principal Component Analysis (DW-RPCA) for defect detection. This approach leverages spectral filter fusion and Hough transform to model different defect types, enhancing the accuracy and efficiency of defect identification. Coupled with an optimized threshold segmentation algorithm, DW-RPCA method achieves a pixel-level accuracy of 84.8%. Our work showcases strong potential for growth in the field of in-situ on-line inspection of industrial products.
Abstract:Localization Quality Estimation (LQE) helps to improve detection performance as it benefits post processing through jointly considering classification score and localization accuracy. In this perspective, for further leveraging the close relationship between localization accuracy and IoU (Intersection-Over-Union), and for depressing those inconsistent predictions, we designed an elegant LQE branch to acquire localization quality score guided by predicted IoU. Distinctly, for alleviating the inconsistency of classification score and localization quality during training and inference, under which some predictions with low classification scores but high LQE scores will impair the performance, instead of separately and independently setting, we embedded LQE branch into classification branch, producing a joint classification-localization-quality representation. Then a novel one stage detector termed CLQ is proposed. Extensive experiments show that CLQ achieves state-of-the-arts' performance at an accuracy of 47.8 AP and a speed of 11.5 fps with ResNeXt-101 as backbone on COCO test-dev. Finally, we extend CLQ to ATSS, producing a reliable 1.2 AP gain, showing our model's strong adaptability and scalability. Codes are released at https://github.com/PanffeeReal/CLQ.