Abstract:For robots to operate in general environments like households, they must be able to perform non-prehensile manipulation actions such as toppling and rolling to manipulate ungraspable objects. However, prior works on non-prehensile manipulation cannot yet generalize across environments with diverse geometries. The main challenge lies in adapting to varying environmental constraints: within a cabinet, the robot must avoid walls and ceilings; to lift objects to the top of a step, the robot must account for the step's pose and extent. While deep reinforcement learning (RL) has demonstrated impressive success in non-prehensile manipulation, accounting for such variability presents a challenge for the generalist policy, as it must learn diverse strategies for each new combination of constraints. To address this, we propose a modular and reconfigurable architecture that adaptively reconfigures network modules based on task requirements. To capture the geometric variability in environments, we extend the contact-based object representation (CORN) to environment geometries, and propose a procedural algorithm for generating diverse environments to train our agent. Taken together, the resulting policy can zero-shot transfer to novel real-world environments and objects despite training entirely within a simulator. We additionally release a simulation-based benchmark featuring nine digital twins of real-world scenes with 353 objects to facilitate non-prehensile manipulation research in realistic domains.
Abstract:Continual learning aims to refine model parameters for new tasks while retaining knowledge from previous tasks. Recently, prompt-based learning has emerged to leverage pre-trained models to be prompted to learn subsequent tasks without the reliance on the rehearsal buffer. Although this approach has demonstrated outstanding results, existing methods depend on preceding task-selection process to choose appropriate prompts. However, imperfectness in task-selection may lead to negative impacts on the performance particularly in the scenarios where the number of tasks is large or task distributions are imbalanced. To address this issue, we introduce I-Prompt, a task-agnostic approach focuses on the visual semantic information of image tokens to eliminate task prediction. Our method consists of semantic prompt matching, which determines prompts based on similarities between tokens, and image token-level prompting, which applies prompts directly to image tokens in the intermediate layers. Consequently, our method achieves competitive performance on four benchmarks while significantly reducing training time compared to state-of-the-art methods. Moreover, we demonstrate the superiority of our method across various scenarios through extensive experiments.
Abstract:Human intelligence gradually accepts new information and accumulates knowledge throughout the lifespan. However, deep learning models suffer from a catastrophic forgetting phenomenon, where they forget previous knowledge when acquiring new information. Class-Incremental Learning aims to create an integrated model that balances plasticity and stability to overcome this challenge. In this paper, we propose a selective regularization method that accepts new knowledge while maintaining previous knowledge. We first introduce an asymmetric feature distillation method for old and new classes inspired by cognitive science, using the gradient of classification and knowledge distillation losses to determine whether to perform pattern completion or pattern separation. We also propose a method to selectively interpolate the weight of the previous model for a balance between stability and plasticity, and we adjust whether to transfer through model confidence to ensure the performance of the previous class and enable exploratory learning. We validate the effectiveness of the proposed method, which surpasses the performance of existing methods through extensive experimental protocols using CIFAR-100, ImageNet-Subset, and ImageNet-Full.