Abstract:With the development of intelligent manufacturing and the increasing complexity of industrial production, root cause diagnosis has gradually become an important research direction in the field of industrial fault diagnosis. However, existing research methods struggle to effectively combine domain knowledge and industrial data, failing to provide accurate, online, and reliable root cause diagnosis results for industrial processes. To address these issues, a novel fault root cause diagnosis framework based on knowledge graph and industrial data, called Root-KGD, is proposed. Root-KGD uses the knowledge graph to represent domain knowledge and employs data-driven modeling to extract fault features from industrial data. It then combines the knowledge graph and data features to perform knowledge graph reasoning for root cause identification. The performance of the proposed method is validated using two industrial process cases, Tennessee Eastman Process (TEP) and Multiphase Flow Facility (MFF). Compared to existing methods, Root-KGD not only gives more accurate root cause variable diagnosis results but also provides interpretable fault-related information by locating faults to corresponding physical entities in knowledge graph (such as devices and streams). In addition, combined with its lightweight nature, Root-KGD is more effective in online industrial applications.
Abstract:For explainable fault detection and classification (FDC), this paper proposes a unified framework, ABIGX (Adversarial fault reconstruction-Based Integrated Gradient eXplanation). ABIGX is derived from the essentials of previous successful fault diagnosis methods, contribution plots (CP) and reconstruction-based contribution (RBC). It is the first explanation framework that provides variable contributions for the general FDC models. The core part of ABIGX is the adversarial fault reconstruction (AFR) method, which rethinks the FR from the perspective of adversarial attack and generalizes to fault classification models with a new fault index. For fault classification, we put forward a new problem of fault class smearing, which intrinsically hinders the correct explanation. We prove that ABIGX effectively mitigates this problem and outperforms the existing gradient-based explanation methods. For fault detection, we theoretically bridge ABIGX with conventional fault diagnosis methods by proving that CP and RBC are the linear specifications of ABIGX. The experiments evaluate the explanations of FDC by quantitative metrics and intuitive illustrations, the results of which show the general superiority of ABIGX to other advanced explanation methods.