Abstract:The rapid evolution of communication technologies has spurred a growing demand for energy-efficient network architectures and performance metrics. Active Reconfigurable Intelligent Surfaces (RIS) are emerging as a key component in green network architectures. Compared to passive RIS, active RIS are equipped with amplifiers on each reflecting element, allowing them to simultaneously reflect and amplify signals, thereby overcoming the double multiplicative fading in the phase response, and improving both system coverage and performance. Additionally, the Integrated Relative Energy Efficiency (IREE) metric, as introduced in [1], addresses the dynamic variations in traffic and capacity over time and space, enabling more energy-efficient wireless systems. Building on these advancements, this paper investigates the problem of maximizing IREE in active RIS-assisted green communication systems. However, acquiring perfect Channel State Information (CSI) in practical systems poses significant challenges and costs. To address this, we derive the average achievable rate based on outdated CSI and formulated the corresponding IREE maximization problem, which is solved by jointly optimizing beamforming at both the base station and RIS. Given the non-convex nature of the problem, we propose an Alternating Optimization Successive Approximation (AOSO) algorithm. By applying quadratic transform and relaxation techniques, we simplify the original problem and alternately optimize the beamforming matrices at the base station and RIS. Furthermore, to handle the discrete constraints of the RIS reflection coefficients, we develop a successive approximation method. Experimental results validate our theoretical analysis of the algorithm's convergence , demonstrating the effectiveness of the proposed algorithm and highlighting the superiority of IREE in enhancing the performance of green communication networks.
Abstract:In the task of comparing two classification algorithms, the widely-used McNemar's test aims to infer the presence of a significant difference between the error rates of the two classification algorithms. However, the power of the conventional McNemar's test is usually unpromising because the hold-out (HO) method in the test merely uses a single train-validation split that usually produces a highly varied estimation of the error rates. In contrast, a cross-validation (CV) method repeats the HO method in multiple times and produces a stable estimation. Therefore, a CV method has a great advantage to improve the power of McNemar's test. Among all types of CV methods, a block-regularized 5$\times$2 CV (BCV) has been shown in many previous studies to be superior to the other CV methods in the comparison task of algorithms because the 5$\times$2 BCV can produce a high-quality estimator of the error rate by regularizing the numbers of overlapping records between all training sets. In this study, we compress the 10 correlated contingency tables in the 5$\times$2 BCV to form an effective contingency table. Then, we define a 5$\times$2 BCV McNemar's test on the basis of the effective contingency table. We demonstrate the reasonable type I error and the promising power of the proposed 5$\times$2 BCV McNemar's test on multiple simulated and real-world data sets.