Abstract:Neural image compression (NIC) has received considerable attention due to its significant advantages in feature representation and data optimization. However, most existing NIC methods for volumetric medical images focus solely on improving human-oriented perception. For these methods, data need to be decoded back to pixels for downstream machine learning analytics, which is a process that lowers the efficiency of diagnosis and treatment in modern digital healthcare scenarios. In this paper, we propose a Versatile Volumetric Medical Image Coding (VVMIC) framework for both human and machine vision, enabling various analytics of coded representations directly without decoding them into pixels. Considering the specific three-dimensional structure distinguished from natural frame images, a Versatile Volumetric Autoencoder (VVAE) module is crafted to learn the inter-slice latent representations to enhance the expressiveness of the current-slice latent representations, and to produce intermediate decoding features for downstream reconstruction and segmentation tasks. To further improve coding performance, a multi-dimensional context model is assembled by aggregating the inter-slice latent context with the spatial-channel context and the hierarchical hypercontext. Experimental results show that our VVMIC framework maintains high-quality image reconstruction for human vision while achieving accurate segmentation results for machine-vision tasks compared to a number of reported traditional and neural methods.
Abstract:Deep learning-based lossless compression methods offer substantial advantages in compressing medical volumetric images. Nevertheless, many learning-based algorithms encounter a trade-off between practicality and compression performance. This paper introduces a hardware-friendly streaming lossless volumetric compression framework, utilizing merely one-thousandth of the model weights compared to other learning-based compression frameworks. We propose a gated recurrent convolutional neural network that combines diverse convolutional structures and fusion gate mechanisms to capture the inter-slice dependencies in volumetric images. Based on such contextual information, we can predict the pixel-by-pixel distribution for entropy coding. Guided by hardware/software co-design principles, we implement the proposed framework on Field Programmable Gate Array to achieve enhanced real-time performance. Extensive experimental results indicate that our method outperforms traditional lossless volumetric compressors and state-of-the-art learning-based lossless compression methods across various medical image benchmarks. Additionally, our method exhibits robust generalization ability and competitive compression speed