Abstract:Disease prediction holds considerable significance in modern healthcare, because of its crucial role in facilitating early intervention and implementing effective prevention measures. However, most recent disease prediction approaches heavily rely on laboratory test outcomes (e.g., blood tests and medical imaging from X-rays). Gaining access to such data for precise disease prediction is often a complex task from the standpoint of a patient and is always only available post-patient consultation. To make disease prediction available from patient-side, we propose Personalized Medical Disease Prediction (PoMP), which predicts diseases using patient health narratives including textual descriptions and demographic information. By applying PoMP, patients can gain a clearer comprehension of their conditions, empowering them to directly seek appropriate medical specialists and thereby reducing the time spent navigating healthcare communication to locate suitable doctors. We conducted extensive experiments using real-world data from Haodf to showcase the effectiveness of PoMP.
Abstract:Recommender systems have been gaining increasing research attention over the years. Most existing recommendation methods focus on capturing users' personalized preferences through historical user-item interactions, which may potentially violate user privacy. Additionally, these approaches often overlook the significance of the temporal fluctuation in item popularity that can sway users' decision-making. To bridge this gap, we propose Popularity-Aware Recommender (PARE), which makes non-personalized recommendations by predicting the items that will attain the highest popularity. PARE consists of four modules, each focusing on a different aspect: popularity history, temporal impact, periodic impact, and side information. Finally, an attention layer is leveraged to fuse the outputs of four modules. To our knowledge, this is the first work to explicitly model item popularity in recommendation systems. Extensive experiments show that PARE performs on par or even better than sophisticated state-of-the-art recommendation methods. Since PARE prioritizes item popularity over personalized user preferences, it can enhance existing recommendation methods as a complementary component. Our experiments demonstrate that integrating PARE with existing recommendation methods significantly surpasses the performance of standalone models, highlighting PARE's potential as a complement to existing recommendation methods. Furthermore, the simplicity of PARE makes it immensely practical for industrial applications and a valuable baseline for future research.