Abstract:In this article, we present a resource-efficient approach for electrocardiogram (ECG) based heartbeat classification using multi-feature fusion and bidirectional long short-term memory (Bi-LSTM). The dataset comprises five original classes from the MIT-BIH Arrhythmia Database: Normal (N), Left Bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB), Premature Ventricular Contraction (PVC), and Paced Beat (PB). Preprocessing methods including the discrete wavelet transform and dual moving average windows are used to reduce noise and artifacts in the raw ECG signal, and extract the main points (PQRST) of the ECG waveform. Multi-feature fusion is achieved by utilizing time intervals and the proposed under-the-curve areas, which are inherently robust against noise, as input features. Simulations demonstrated that incorporating under-the-curve area features improved the classification accuracy for the challenging RBBB and LBBB classes from 31.4\% to 84.3\% for RBBB, and from 69.6\% to 87.0\% for LBBB. Using a Bi-LSTM network, rather than a conventional LSTM network, resulted in higher accuracy (33.8\% vs 21.8\%) with a 28\% reduction in required network parameters for the RBBB class. Multiple neural network models with varying parameter sizes, including tiny (84k), small (150k), medium (478k), and large (1.25M) models, are developed to achieve high accuracy \textit{across all classes}, a more crucial and challenging goal than overall classification accuracy.
Abstract:Resource limitations make it hard to provide all students with one of the most effective educational interventions: personalized instruction. Reinforcement learning could be a key tool to reduce the development cost and improve the effectiveness of intelligent tutoring software that aims to provide the right support, at the right time, to a student. Here we illustrate that deep reinforcement learning can be used to provide adaptive pedagogical support to students learning about the concept of volume in a narrative storyline software. Using explainable artificial intelligence tools, we extracted interpretable insights about the pedagogical policy learned and demonstrated that the resulting policy had similar performance in a different student population. Most importantly, in both studies, the reinforcement-learning narrative system had the largest benefit for those students with the lowest initial pretest scores, suggesting the opportunity for AI to adapt and provide support for those most in need.
Abstract:In the era of Internet of Things (IoT), network-wide anomaly detection is a crucial part of monitoring IoT networks due to the inherent security vulnerabilities of most IoT devices. Principal Components Analysis (PCA) has been proposed to separate network traffics into two disjoint subspaces corresponding to normal and malicious behaviors for anomaly detection. However, the privacy concerns and limitations of devices' computing resources compromise the practical effectiveness of PCA. We propose a federated PCA-based Grassmannian optimization framework that coordinates IoT devices to aggregate a joint profile of normal network behaviors for anomaly detection. First, we introduce a privacy-preserving federated PCA framework to simultaneously capture the profile of various IoT devices' traffic. Then, we investigate the alternating direction method of multipliers gradient-based learning on the Grassmann manifold to guarantee fast training and the absence of detecting latency using limited computational resources. Empirical results on the NSL-KDD dataset demonstrate that our method outperforms baseline approaches. Finally, we show that the Grassmann manifold algorithm is highly adapted for IoT anomaly detection, which permits drastically reducing the analysis time of the system. To the best of our knowledge, this is the first federated PCA algorithm for anomaly detection meeting the requirements of IoT networks.