Abstract:Multi-fidelity machine learning methods address the accuracy-efficiency trade-off by integrating scarce, resource-intensive high-fidelity data with abundant but less accurate low-fidelity data. We propose a practical multi-fidelity strategy for problems spanning low- and high-dimensional domains, integrating a non-probabilistic regression model for the low-fidelity with a Bayesian model for the high-fidelity. The models are trained in a staggered scheme, where the low-fidelity model is transfer-learned to the high-fidelity data and a Bayesian model is trained for the residual. This three-model strategy -- deterministic low-fidelity, transfer learning, and Bayesian residual -- leads to a prediction that includes uncertainty quantification both for noisy and noiseless multi-fidelity data. The strategy is general and unifies the topic, highlighting the expressivity trade-off between the transfer-learning and Bayesian models (a complex transfer-learning model leads to a simpler Bayesian model, and vice versa). We propose modeling choices for two scenarios, and argue in favor of using a linear transfer-learning model that fuses 1) kernel ridge regression for low-fidelity with Gaussian processes for high-fidelity; or 2) deep neural network for low-fidelity with a Bayesian neural network for high-fidelity. We demonstrate the effectiveness and efficiency of the proposed strategies and contrast them with the state-of-the-art based on various numerical examples. The simplicity of these formulations makes them practical for a broad scope of future engineering applications.
Abstract:Data-driven modeling in mechanics is evolving rapidly based on recent machine learning advances, especially on artificial neural networks. As the field matures, new data and models created by different groups become available, opening possibilities for cooperative modeling. However, artificial neural networks suffer from catastrophic forgetting, i.e. they forget how to perform an old task when trained on a new one. This hinders cooperation because adapting an existing model for a new task affects the performance on a previous task trained by someone else. The authors developed a continual learning method that addresses this issue, applying it here for the first time to solid mechanics. In particular, the method is applied to recurrent neural networks to predict history-dependent plasticity behavior, although it can be used on any other architecture (feedforward, convolutional, etc.) and to predict other phenomena. This work intends to spawn future developments on continual learning that will foster cooperative strategies among the mechanics community to solve increasingly challenging problems. We show that the chosen continual learning strategy can sequentially learn several constitutive laws without forgetting them, using less data to achieve the same error as standard training of one law per model.