Abstract:As an evolving successor to the mobile Internet, the Metaverse creates the impression of an immersive environment, integrating the virtual as well as the real world. In contrast to the traditional mobile Internet based on servers, the Metaverse is constructed by billions of cooperating users by harnessing their smart edge devices having limited communication and computation resources. In this immersive environment an unprecedented amount of multi-modal data has to be processed. To circumvent this impending bottleneck, low-rate semantic communication might be harnessed in support of the Metaverse. But given that private multi-modal data is exchanged in the Metaverse, we have to guard against security breaches and privacy invasions. Hence we conceive a trust-worthy semantic communication system for the Metaverse based on a federated learning architecture by exploiting its distributed decision-making and privacy-preserving capability. We conclude by identifying a suite of promising research directions and open issues.
Abstract:As an evolving successor to the mobile Internet, the extended reality (XR) devices can generate a fully digital immersive environment similar to the real world, integrating integrating virtual and real-world elements. However, in addition to the difficulties encountered in traditional communications, there emerge a range of new challenges such as ultra-massive access, real-time synchronization as well as unprecedented amount of multi-modal data transmission and processing. To address these challenges, semantic communications might be harnessed in support of XR applications, whereas it lacks a practical and effective performance metric. For broadening a new path for evaluating semantic communications, in this paper, we construct a multi-user uplink non-orthogonal multiple access (NOMA) system to analyze its transmission performance by harnessing a novel metric called age of incorrect information (AoII). First, we derive the average semantic similarity of all the users based on DeepSC and obtain the closed-form expressions for the packets' age of information (AoI) relying on queue theory. Besides, we formulate a non-convex optimization problem for the proposed AoII which combines both error-and AoI-based performance under the constraints of semantic rate, transmit power and status update rate. Finally, in order to solve the problem, we apply an exact linear search based algorithm for finding the optimal policy. Simulation results show that the AoII metric can beneficially evaluate both the error- and AoI-based transmission performance simultaneously.