Abstract:For traffic incident detection, the acquisition of data and labels is notably resource-intensive, rendering semi-supervised traffic incident detection both a formidable and consequential challenge. Thus, this paper focuses on traffic incident detection with a semi-supervised learning way. It proposes a semi-supervised learning model named FPMT within the framework of MixText. The data augmentation module introduces Generative Adversarial Networks to balance and expand the dataset. During the mix-up process in the hidden space, it employs a probabilistic pseudo-mixing mechanism to enhance regularization and elevate model precision. In terms of training strategy, it initiates with unsupervised training on all data, followed by supervised fine-tuning on a subset of labeled data, and ultimately completing the goal of semi-supervised training. Through empirical validation on four authentic datasets, our FPMT model exhibits outstanding performance across various metrics. Particularly noteworthy is its robust performance even in scenarios with low label rates.
Abstract:Accurate real-time object detection enhances the safety of advanced driver-assistance systems, making it an essential component in driving scenarios. With the rapid development of deep learning technology, CNN-based YOLO real-time object detectors have gained significant attention. However, the local focus of CNNs results in performance bottlenecks. To further enhance detector performance, researchers have introduced Transformer-based self-attention mechanisms to leverage global receptive fields, but their quadratic complexity incurs substantial computational costs. Recently, Mamba, with its linear complexity, has made significant progress through global selective scanning. Inspired by Mamba's outstanding performance, we propose a novel object detector: DS MYOLO. This detector captures global feature information through a simplified selective scanning fusion block (SimVSS Block) and effectively integrates the network's deep features. Additionally, we introduce an efficient channel attention convolution (ECAConv) that enhances cross-channel feature interaction while maintaining low computational complexity. Extensive experiments on the CCTSDB 2021 and VLD-45 driving scenarios datasets demonstrate that DS MYOLO exhibits significant potential and competitive advantage among similarly scaled YOLO series real-time object detectors.
Abstract:Traffic flow forecasting is considered a critical task in the field of intelligent transportation systems. In this paper, to address the issue of low accuracy in long-term forecasting of spatial-temporal big data on traffic flow, we propose an innovative model called Spatial-Temporal Retentive Network (ST-RetNet). We extend the Retentive Network to address the task of traffic flow forecasting. At the spatial scale, we integrate a topological graph structure into Spatial Retentive Network(S-RetNet), utilizing an adaptive adjacency matrix to extract dynamic spatial features of the road network. We also employ Graph Convolutional Networks to extract static spatial features of the road network. These two components are then fused to capture dynamic and static spatial correlations. At the temporal scale, we propose the Temporal Retentive Network(T-RetNet), which has been demonstrated to excel in capturing long-term dependencies in traffic flow patterns compared to other time series models, including Recurrent Neural Networks based and transformer models. We achieve the spatial-temporal traffic flow forecasting task by integrating S-RetNet and T-RetNet to form ST-RetNet. Through experimental comparisons conducted on four real-world datasets, we demonstrate that ST-RetNet outperforms the state-of-the-art approaches in traffic flow forecasting.
Abstract:Traffic flow forecasting is a crucial task in transportation management and planning. The main challenges for traffic flow forecasting are that (1) as the length of prediction time increases, the accuracy of prediction will decrease; (2) the predicted results greatly rely on the extraction of temporal and spatial dependencies from the road networks. To overcome the challenges mentioned above, we propose a multi-channel spatial-temporal transformer model for traffic flow forecasting, which improves the accuracy of the prediction by fusing results from different channels of traffic data. Our approach leverages graph convolutional network to extract spatial features from each channel while using a transformer-based architecture to capture temporal dependencies across channels. We introduce an adaptive adjacency matrix to overcome limitations in feature extraction from fixed topological structures. Experimental results on six real-world datasets demonstrate that introducing a multi-channel mechanism into the temporal model enhances performance and our proposed model outperforms state-of-the-art models in terms of accuracy.
Abstract:In addition to enhancing traffic safety and facilitating prompt emergency response, traffic incident detection plays an indispensable role in intelligent transportation systems by providing real-time traffic status information. This enables the realization of intelligent traffic control and management. Previous research has identified that apart from employing advanced algorithmic models, the effectiveness of detection is also significantly influenced by challenges related to acquiring large datasets and addressing dataset imbalances. A hybrid model combining transformer and generative adversarial networks (GANs) is proposed to address these challenges. Experiments are conducted on four real datasets to validate the superiority of the transformer in traffic incident detection. Additionally, GANs are utilized to expand the dataset and achieve a balanced ratio of 1:4, 2:3, and 1:1. The proposed model is evaluated against the baseline model. The results demonstrate that the proposed model enhances the dataset size, balances the dataset, and improves the performance of traffic incident detection in various aspects.
Abstract:Long-term traffic prediction has always been a challenging task due to its dynamic temporal dependencies and complex spatial dependencies. In this paper, we propose a model that combines hybrid Transformer and spatio-temporal self-supervised learning. The model enhances its robustness by applying adaptive data augmentation techniques at the sequence-level and graph-level of the traffic data. It utilizes Transformer to overcome the limitations of recurrent neural networks in capturing long-term sequences, and employs Chebyshev polynomial graph convolution to capture complex spatial dependencies. Furthermore, considering the impact of spatio-temporal heterogeneity on traffic speed, we design two self-supervised learning tasks to model the temporal and spatial heterogeneity, thereby improving the accuracy and generalization ability of the model. Experimental evaluations are conducted on two real-world datasets, PeMS04 and PeMS08, and the results are visualized and analyzed, demonstrating the superior performance of the proposed model.
Abstract:Intelligent Transportation Systems (ITS) utilize sensors, cameras, and big data analysis to monitor real-time traffic conditions, aiming to improve traffic efficiency and safety. Accurate vehicle recognition is crucial in this process, and Vehicle Logo Recognition (VLR) stands as a key method. VLR enables effective management and monitoring by distinguishing vehicles on the road. Convolutional Neural Networks (CNNs) have made impressive strides in VLR research. However, achieving higher performance demands significant time and computational resources for training. Recently, the rise of Transformer models has brought new opportunities to VLR. Swin Transformer, with its efficient computation and global feature modeling capabilities, outperforms CNNs under challenging conditions. In this paper, we implement real-time VLR using Swin Transformer and fine-tune it for optimal performance. Extensive experiments conducted on three public vehicle logo datasets (HFUT-VL1, XMU, CTGU-VLD) demonstrate impressive top accuracy results of 99.28%, 100%, and 99.17%, respectively. Additionally, the use of a transfer learning strategy enables our method to be on par with state-of-the-art VLR methods. These findings affirm the superiority of our approach over existing methods. Future research can explore and optimize the application of the Swin Transformer in other vehicle vision recognition tasks to drive advancements in ITS.