Abstract:For traffic incident detection, the acquisition of data and labels is notably resource-intensive, rendering semi-supervised traffic incident detection both a formidable and consequential challenge. Thus, this paper focuses on traffic incident detection with a semi-supervised learning way. It proposes a semi-supervised learning model named FPMT within the framework of MixText. The data augmentation module introduces Generative Adversarial Networks to balance and expand the dataset. During the mix-up process in the hidden space, it employs a probabilistic pseudo-mixing mechanism to enhance regularization and elevate model precision. In terms of training strategy, it initiates with unsupervised training on all data, followed by supervised fine-tuning on a subset of labeled data, and ultimately completing the goal of semi-supervised training. Through empirical validation on four authentic datasets, our FPMT model exhibits outstanding performance across various metrics. Particularly noteworthy is its robust performance even in scenarios with low label rates.
Abstract:In addition to enhancing traffic safety and facilitating prompt emergency response, traffic incident detection plays an indispensable role in intelligent transportation systems by providing real-time traffic status information. This enables the realization of intelligent traffic control and management. Previous research has identified that apart from employing advanced algorithmic models, the effectiveness of detection is also significantly influenced by challenges related to acquiring large datasets and addressing dataset imbalances. A hybrid model combining transformer and generative adversarial networks (GANs) is proposed to address these challenges. Experiments are conducted on four real datasets to validate the superiority of the transformer in traffic incident detection. Additionally, GANs are utilized to expand the dataset and achieve a balanced ratio of 1:4, 2:3, and 1:1. The proposed model is evaluated against the baseline model. The results demonstrate that the proposed model enhances the dataset size, balances the dataset, and improves the performance of traffic incident detection in various aspects.