Abstract:Traffic flow forecasting is considered a critical task in the field of intelligent transportation systems. In this paper, to address the issue of low accuracy in long-term forecasting of spatial-temporal big data on traffic flow, we propose an innovative model called Spatial-Temporal Retentive Network (ST-RetNet). We extend the Retentive Network to address the task of traffic flow forecasting. At the spatial scale, we integrate a topological graph structure into Spatial Retentive Network(S-RetNet), utilizing an adaptive adjacency matrix to extract dynamic spatial features of the road network. We also employ Graph Convolutional Networks to extract static spatial features of the road network. These two components are then fused to capture dynamic and static spatial correlations. At the temporal scale, we propose the Temporal Retentive Network(T-RetNet), which has been demonstrated to excel in capturing long-term dependencies in traffic flow patterns compared to other time series models, including Recurrent Neural Networks based and transformer models. We achieve the spatial-temporal traffic flow forecasting task by integrating S-RetNet and T-RetNet to form ST-RetNet. Through experimental comparisons conducted on four real-world datasets, we demonstrate that ST-RetNet outperforms the state-of-the-art approaches in traffic flow forecasting.
Abstract:Traffic flow forecasting is a crucial task in transportation management and planning. The main challenges for traffic flow forecasting are that (1) as the length of prediction time increases, the accuracy of prediction will decrease; (2) the predicted results greatly rely on the extraction of temporal and spatial dependencies from the road networks. To overcome the challenges mentioned above, we propose a multi-channel spatial-temporal transformer model for traffic flow forecasting, which improves the accuracy of the prediction by fusing results from different channels of traffic data. Our approach leverages graph convolutional network to extract spatial features from each channel while using a transformer-based architecture to capture temporal dependencies across channels. We introduce an adaptive adjacency matrix to overcome limitations in feature extraction from fixed topological structures. Experimental results on six real-world datasets demonstrate that introducing a multi-channel mechanism into the temporal model enhances performance and our proposed model outperforms state-of-the-art models in terms of accuracy.
Abstract:Long-term traffic prediction has always been a challenging task due to its dynamic temporal dependencies and complex spatial dependencies. In this paper, we propose a model that combines hybrid Transformer and spatio-temporal self-supervised learning. The model enhances its robustness by applying adaptive data augmentation techniques at the sequence-level and graph-level of the traffic data. It utilizes Transformer to overcome the limitations of recurrent neural networks in capturing long-term sequences, and employs Chebyshev polynomial graph convolution to capture complex spatial dependencies. Furthermore, considering the impact of spatio-temporal heterogeneity on traffic speed, we design two self-supervised learning tasks to model the temporal and spatial heterogeneity, thereby improving the accuracy and generalization ability of the model. Experimental evaluations are conducted on two real-world datasets, PeMS04 and PeMS08, and the results are visualized and analyzed, demonstrating the superior performance of the proposed model.