Abstract:Zero-shot Learning(ZSL) attains knowledge transfer from seen classes to unseen classes by exploring auxiliary category information, which is a promising yet difficult research topic. In this field, Audio-Visual Generalized Zero-Shot Learning~(AV-GZSL) has aroused researchers' great interest in which intricate relations within triple modalities~(audio, video, and natural language) render this task quite challenging but highly research-worthy. However, both existing embedding-based and generative-based AV-GZSL methods tend to suffer from domain shift problem a lot and we propose an extremely simple Out-of-distribution~(OOD) detection based AV-GZSL method~(EZ-AVOOD) to further mitigate bias problem by differentiating seen and unseen samples at the initial beginning. EZ-AVOOD accomplishes effective seen-unseen separation by exploiting the intrinsic discriminative information held in class-specific logits and class-agnostic feature subspace without training an extra OOD detector network. Followed by seen-unseen binary classification, we employ two expert models to classify seen samples and unseen samples separately. Compared to existing state-of-the-art methods, our model achieves superior ZSL and GZSL performances on three audio-visual datasets and becomes the new SOTA, which comprehensively demonstrates the effectiveness of the proposed EZ-AVOOD.
Abstract:Convolutional neural networks and supervised learning have achieved remarkable success in various fields but are limited by the need for large annotated datasets. Few-shot learning (FSL) addresses this limitation by enabling models to generalize from only a few labeled examples. Transductive few-shot learning (TFSL) enhances FSL by leveraging both labeled and unlabeled data, though it faces challenges like the hubness problem. To overcome these limitations, we propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning through three innovative contributions. First, we introduce a decentralized covariance matrix to mitigate the hubness problem, ensuring a more uniform distribution of embeddings. Second, our method combines local alignment and global uniformity through adaptive weighting and nonlinear transformation, balancing intra-class clustering with inter-class separation. Third, we employ a Variational Sinkhorn Few-Shot Classifier to optimize the distances between samples and class prototypes, enhancing classification accuracy and robustness. These combined innovations allow the UMMEC method to achieve superior performance with minimal labeled data. Our UMMEC method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in TFSL.
Abstract:Compositional Zero-Shot Learning (CZSL) recognizes new combinations by learning from known attribute-object pairs. However, the main challenge of this task lies in the complex interactions between attributes and object visual representations, which lead to significant differences in images. In addition, the long-tail label distribution in the real world makes the recognition task more complicated. To address these problems, we propose a novel method, named Hybrid Discriminative Attribute-Object Embedding (HDA-OE) network. To increase the variability of training data, HDA-OE introduces an attribute-driven data synthesis (ADDS) module. ADDS generates new samples with diverse attribute labels by combining multiple attributes of the same object. By expanding the attribute space in the dataset, the model is encouraged to learn and distinguish subtle differences between attributes. To further improve the discriminative ability of the model, HDA-OE introduces the subclass-driven discriminative embedding (SDDE) module, which enhances the subclass discriminative ability of the encoding by embedding subclass information in a fine-grained manner, helping to capture the complex dependencies between attributes and object visual features. The proposed model has been evaluated on three benchmark datasets, and the results verify its effectiveness and reliability.
Abstract:Sketch-based image retrieval (SBIR) relies on free-hand sketches to retrieve natural photos within the same class. However, its practical application is limited by its inability to retrieve classes absent from the training set. To address this limitation, the task has evolved into Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR), where model performance is evaluated on unseen categories. Traditional SBIR primarily focuses on narrowing the domain gap between photo and sketch modalities. However, in the zero-shot setting, the model not only needs to address this cross-modal discrepancy but also requires a strong generalization capability to transfer knowledge to unseen categories. To this end, we propose a novel framework for ZS-SBIR that employs a pair-based relation-aware quadruplet loss to bridge feature gaps. By incorporating two negative samples from different modalities, the approach prevents positive features from becoming disproportionately distant from one modality while remaining close to another, thus enhancing inter-class separability. We also propose a Relation-Aware Meta-Learning Network (RAMLN) to obtain the margin, a hyper-parameter of cross-modal quadruplet loss, to improve the generalization ability of the model. RAMLN leverages external memory to store feature information, which it utilizes to assign optimal margin values. Experimental results obtained on the extended Sketchy and TU-Berlin datasets show a sharp improvement over existing state-of-the-art methods in ZS-SBIR.