Abstract:Goal-driven mobile robot navigation in map-less environments requires effective state representations for reliable decision-making. Inspired by the favorable properties of Bird's-Eye View (BEV) in point clouds for visual perception, this paper introduces a novel navigation approach named BEVNav. It employs deep reinforcement learning to learn BEV representations and enhance decision-making reliability. First, we propose a self-supervised spatial-temporal contrastive learning approach to learn BEV representations. Spatially, two randomly augmented views from a point cloud predict each other, enhancing spatial features. Temporally, we combine the current observation with consecutive frames' actions to predict future features, establishing the relationship between observation transitions and actions to capture temporal cues. Then, incorporating this spatial-temporal contrastive learning in the Soft Actor-Critic reinforcement learning framework, our BEVNav offers a superior navigation policy. Extensive experiments demonstrate BEVNav's robustness in environments with dense pedestrians, outperforming state-of-the-art methods across multiple benchmarks. \rev{The code will be made publicly available at https://github.com/LanrenzzzZ/BEVNav.
Abstract:Label distribution learning (LDL) is an effective method to predict the label description degree (a.k.a. label distribution) of a sample. However, annotating label distribution (LD) for training samples is extremely costly. So recent studies often first use label enhancement (LE) to generate the estimated label distribution from the logical label and then apply external LDL algorithms on the recovered label distribution to predict the label distribution for unseen samples. But this step-wise manner overlooks the possible connections between LE and LDL. Moreover, the existing LE approaches may assign some description degrees to invalid labels. To solve the above problems, we propose a novel method to learn an LDL model directly from the logical label, which unifies LE and LDL into a joint model, and avoids the drawbacks of the previous LE methods. Extensive experiments on various datasets prove that the proposed approach can construct a reliable LDL model directly from the logical label, and produce more accurate label distribution than the state-of-the-art LE methods.