Abstract:Parametric array loudspeakers (PALs) are known for producing highly directional audio beams, a feat more challenging to achieve with conventional electro-dynamic loudspeakers (EDLs). Due to their intrinsic physical mechanisms, PALs hold promising potential for spatial audio applications such as virtual reality (VR). However, the feasibility of using an array of PALs for sound zone control (SZC) has remained unexplored, mainly due to the complexity of the nonlinear demodulation process inherent in PALs. Leveraging recent advancements in PAL modeling, this work proposes an optimization algorithm to achieve the acoustic contrast control (ACC) between two target areas using a PAL array. The performance and robustness of the proposed ACC-based SZC using PAL arrays are investigated through simulations, and the results are compared with those obtained using EDL arrays. The results show that the PAL array outperforms the EDL array in SZC performance and robustness at higher frequencies and lower signal-to-noise ratio, while being comparable under other conditions. This work paves the way for high-contrast acoustic control using PAL arrays.