Abstract:This paper describes the search for an alternative approach to the automatic categorization of camera trap images. First, we benchmark state-of-the-art classifiers using a single model for all images. Next, we evaluate methods combining MegaDetector with one or more classifiers and Segment Anything to assess their impact on reducing location-specific overfitting. Last, we propose and test two approaches using large language and foundational models, such as DINOv2, BioCLIP, BLIP, and ChatGPT, in a zero-shot scenario. Evaluation carried out on two publicly available datasets (WCT from New Zealand, CCT20 from the Southwestern US) and a private dataset (CEF from Central Europe) revealed that combining MegaDetector with two separate classifiers achieves the highest accuracy. This approach reduced the relative error of a single BEiTV2 classifier by approximately 42\% on CCT20, 48\% on CEF, and 75\% on WCT. Besides, as the background is removed, the error in terms of accuracy in new locations is reduced to half. The proposed zero-shot pipeline based on DINOv2 and FAISS achieved competitive results (1.0\% and 4.7\% smaller on CCT20, and CEF, respectively), which highlights the potential of zero-shot approaches for camera trap image categorization.
Abstract:We study methods for automated parsing of informal mathematical expressions into formal ones, a main prerequisite for deep computer understanding of informal mathematical texts. We propose a context-based parsing approach that combines efficient statistical learning of deep parse trees with their semantic pruning by type checking and large-theory automated theorem proving. We show that the methods very significantly improve on previous results in parsing theorems from the Flyspeck corpus.
Abstract:Machine Learner for Automated Reasoning (MaLARea) is a learning and reasoning system for proving in large formal libraries where thousands of theorems are available when attacking a new conjecture, and a large number of related problems and proofs can be used to learn specific theorem-proving knowledge. The last version of the system has by a large margin won the 2013 CASC LTB competition. This paper describes the motivation behind the methods used in MaLARea, discusses the general approach and the issues arising in evaluation of such system, and describes the Mizar@Turing100 and CASC'24 versions of MaLARea.