Abstract:The Neural Network Field Theory correspondence (NNFT) is a mapping from neural network (NN) architectures into the space of statistical field theories (SFTs). The Bayesian renormalization group (BRG) is an information-theoretic coarse graining scheme that generalizes the principles of the Exact Renormalization Group (ERG) to arbitrarily parameterized probability distributions, including those of NNs. In BRG, coarse graining is performed in parameter space with respect to an information-theoretic distinguishability scale set by the Fisher information metric. In this paper, we unify NNFT and BRG to form a powerful new framework for exploring the space of NNs and SFTs, which we coin BRG-NNFT. With BRG-NNFT, NN training dynamics can be interpreted as inducing a flow in the space of SFTs from the information-theoretic `IR' $\rightarrow$ `UV'. Conversely, applying an information-shell coarse graining to the trained network's parameters induces a flow in the space of SFTs from the information-theoretic `UV' $\rightarrow$ `IR'. When the information-theoretic cutoff scale coincides with a standard momentum scale, BRG is equivalent to ERG. We demonstrate the BRG-NNFT correspondence on two analytically tractable examples. First, we construct BRG flows for trained, infinite-width NNs, of arbitrary depth, with generic activation functions. As a special case, we then restrict to architectures with a single infinitely-wide layer, scalar outputs, and generalized cos-net activations. In this case, we show that BRG coarse-graining corresponds exactly to the momentum-shell ERG flow of a free scalar SFT. Our analytic results are corroborated by a numerical experiment in which an ensemble of asymptotically wide NNs are trained and subsequently renormalized using an information-shell BRG scheme.
Abstract:Separating relevant and irrelevant information is key to any modeling process or scientific inquiry. Theoretical physics offers a powerful tool for achieving this in the form of the renormalization group (RG). Here we demonstrate a practical approach to performing Wilsonian RG in the context of Gaussian Process (GP) Regression. We systematically integrate out the unlearnable modes of the GP kernel, thereby obtaining an RG flow of the Gaussian Process in which the data plays the role of the energy scale. In simple cases, this results in a universal flow of the ridge parameter, which becomes input-dependent in the richer scenario in which non-Gaussianities are included. In addition to being analytically tractable, this approach goes beyond structural analogies between RG and neural networks by providing a natural connection between RG flow and learnable vs. unlearnable modes. Studying such flows may improve our understanding of feature learning in deep neural networks, and identify potential universality classes in these models.